Entity Grounding, Structure and Ramification

Abstract

The literature on metaphysical ground often conceives the relation
of grounding as only concerning facts or fact-like entities that hold
‘in virtue of’ other such entities. A few exceptions to this tradition
stand out, however, according to which entities of all kinds, such as
individuals, propositions, facts, properties and relations, are capable
of entering into grounding relations—what 1s sometimes called ‘entity
grounding’. In this paper, I lay down and defend certain plausible
principles of entity grounding along the lines of what is explicitly or
implicitly entertained in the literature, and argue that eapturing these
principles requires relational entities such as propositions and prop-
erties to come in infinite levels—hierarchies that are best captured by
a ramified theory of types.

1 Introduction

The literature on metaphysical ground often conceives the relation of ground-
ing as only concerning facts or fact-like entities that hold “in virtue of " other
such entities, manifesting the idea that the latter ‘explain’ or are ‘more fun-
damental’ than the former (see, e.g., Audi 2012; Fine 2012; Rosen 2010, for
such construals of ground). A few exceptions to this tradition stand out,
however, according to which entities of all kainds, such as individuals, propo-
sitions, facts, properties and relations, are capable of entering into grounding
relations (as in, e.g., deRosset 2013; Schaffer 2009; Wilhelm 2020a)—what
is sometimes called ‘entity grounding’ (Wilhelm 2020a).

In this paper. I lay down and defend certain plansible principles of entity
grounding, along the lines of what's been explicitly or implicitly entertained
in the literature, and argue that they require propositions, properties and
other types of relations each to come in infinite levels, where, roughly put,
the inhabitants of higher levels are obtained through quantification owver
the ones from lower levels. I then rigorously propose certain ramfied type
systems that best capture the talk of entity grounding and the infinitary
hierarchies i1t calls for.



This paper 1s the first of five broadly related papers in which I set out to
explore a deep interconnection between structured views of reality, different
notions of metaphysical priority, and ramified type systems. The general
goal of the series is to show that these together bring about a uniform, el-
egant picture of reality within which a cluster of puzzles and paradoxes of
ground and grain in contemporary metaphysics are settled while rejecting
any of them will make the picture collapse in its entirety. The main task
of this paper, in particular, is to argue that certain considerations regard-
ing entity grounding and structure call for infimitary hierarchies of relational
entities such as propositions and properties, and to rigorously devise a ram-
ified type system that captures them. Anonymous (MS[c]) attends to issues
regarding the consistency of ramified type theory and how, in particular, it
secures highly structured accounts of propositions from paradoxes of grain,
such as the Russell-Myhill paradox (see e.g., Goodman 2016; Hodes 2015;
Myhill 1958; Russell 1903; Uzquiano 2015, for various versions of the para-
dox). Anonymous (MS[e]) uses highly structured propositions to lay down
a novel and expressive semantics for unrestricted impure propositional log-
ics of truth-functional, iterated and identity grounding (as explored in, e.g.,
Bennett 2011; Correia 2017; Fine 2012; Kramer 2018; Wilhelm 2020b), and
Anonymous (MS[b]) leverages the ramified hierarchy to settle some of the
prominent puzzles of quantificational ground (as explored in, e.g., Donald-
son 2017; Fine 2010; Fritz 2021; Kramer 2013) in a unified way.! Finally,
Anonymous (MS[d]) sheds light on the historical roots of the ideas explored
in this paper. It i1s hoped that the findings of these papers contribute to
promoting ramified type theory in the scene of contemporary metaphysics,
alonggide its main rivals, namely simple type theory and its coarse-grained
metaphysical offspring.

Here's how the paper i1s organized. In §2 I introduce the notion of entity
grounding and argue for some minimal principles that characterize it. In
§3 I argue that attempts in capturing the propositional fragment of the
talk of entity grounding naturally lead to fragmentation of the space of
propositions into an infinite hierarchy of levels. §4 explicates notions of
structure and constituency for relational entities and argues for stratification
of all relational types. In §5 I introduce a general ramified type system
motivated by discussions taking place in the preceding sections. The paper
concludes in §6.

In effect, our ramified approach can be said to constitute a ‘predicative’ solution to
these puzzles which has long been speculated but remained fairly underexplored; see Fine
(2010) and Kramer (2013).



2 Entity Grounding and Its Principles

In this section, I introduce the notion of entity grounding and lay down some
plausible principles that characterize it. The next two sections will utihize
these principles and argue for fragmentation of propositions, as well as other
relational entities, into certain infimitary hierarchies of levels that are best
captured by ramified type systems.

Entity grounding (hereafter: e-grounding) is a relation of metaphysical
priority that can hold between entities of any type. An individual may
e-ground a proposition or fact, a proposition may e-ground a property, a
property may e-ground a relation or a proposition, and so on. To illustrate
with examples along the lines of the literature: ‘[for any entity i) ¢ = 7 is
grounded i ' (Wilhelm 2020a), ‘Obama, the man in full, grounds the fact
that Obama exists; Obama grounds his singleton; the property being white
grounds being white or square; England grounds (in part) the property of
being queen of England’ (deRosset 2013).2

The examples above, and many more in the literature, highlight an
immplicit or explicit sense of structural complexity that statements of e-
grounding exhibit. Thus, correctly saying that a e-grounds b reflects the
fact that a is, as it were, a ‘building block’ of b, or b 15 somehow ‘construct-
ed’ in part from a.® It is this construction, it would seem, that puts a prior

*Traces of the idea that Russell’s ramified type theory can be motivated by a sense of
‘conetruction’, and the relation of this to vicious circle principles, can be found in Gaodel
(1084 [1944]) and Quine (1963), though the resoclution there is that only a constructivist
worldview, according to which, e.g.. mathematical entities are pure constructions of mind.
can accommodate ramified types (see, e.g., Godel 1084 [1044], p. 456). However, Jung
(1099) and Hylton (2008) argue through textual evidence that Russell’s notion of ‘pre-
supposition’ does exactly carry the relevant sense of construction, though in a completely
realisf background. My notion of entity grounding is, in fact, motivated by and a close
kin of Russell’s ‘presupposition’, and most of the principles applying to the former (as
introduced below) correspond to similar principles governing the latter (as laid down
in the references above). However, unlike entity grounding, Russell’s ‘presupposition-
8" aren’t given primitively, and in fact are closer in nature to naive, ‘modal-exdstential’
conceptions of ontological dependence which have been heavily criticized in the recent
literature (see, e.g., Fine 1095). Another difference is our departure from Russell’s rather
contentions assumptions on the nature of propositional functions and how they're related
to presuppositions (see Hylton 2008, for a discussion of the latter). In what follows I will
not address these historical remarls due to the scope limite of the paper; the interested
reader can see Anonymous (MS[d]) for a detailed discussion.

#*0One might think the talk of ‘building blocks’ presupposes some sense of unigue de-
compogition of entities into parte—ithe partas that constitute them, as it were—and that
there might be more than one way to decompose a relational entity into parts, much like
there are many ways to cut a sphere into two hemispherea. While it well might be so, the
assumption of either a unique or plural decomposition of entities into constituents would
geemn to serve our purposes in this paper equally well; in effect, we can run our arguments
for those decompositions that are relevant to our purposes.



to b in a metaphysical sense. We will explicate the sense of construction at
stake further, along the way.?

We mentioned that e-grounding is a relation of metaphysical priority.
One might wonder at the outset whether the notion of e-grounding is the
same as that of fact grounding (henceforth: f-grounding). But that can’t be
the case. The most straightforward reason for this is that, as was mentioned
earlier, f-grounding, as opposed to e-grounding, 1s much more restricted in its
scope, being only concerned with entities like propositions and facts.® Also,
and as it will become clear along the way, even if one narrows down the
scope of e-grounding to fact-like entities, the notion does not have anything
to do with the truth of the entities involved, but rather, somehow with their
structural complexity.

In what follows, I will argue for some plausible principles that charac-
terize the notion of e-grounding. As we will see, most of these principles
are either explicitly or implicitly, and in part or fully entertained by other
authors in the hterature, and otherwise quite naturally build upon them.
Aside from the overall conformity to the literature and the intuitive appeal
of the principles of e-grounding that are to be discussed in this section, it
18 important to also bear in mind that perhaps an even more substantial
defense of these principles consists in the role they play in the larger scene
of contemporary metaphysics, where, as the sequels to this paper show, a
vast array of puzzles and paradoxes of ground and grain are uniformly and
naturally resolved. One can perhaps compare this to the status of certain
principles of set theory, e.g., as in ZFC, where, aside from their intuitive
appeal, the rich and unified mathematics they bring about itself counts as
an indirect, abductive angment for their truth and swmitability, and even as
a foundation for mathematics.

We start by taking, along with Schaffer (2009), the notion of e-grounding
as a primitive, that is not analyzable in terms of any other notions. Also, fol-
lowing deRosset (2013 ) and Schaffer (2009), I take the relation of e-grounding
to be transitive and irreflexive (hence a strict order).

Thus we have our first two principles:

o Nothing e-grounds itself. IR

41t is to be noted that while in this paper we mostly take interest in and focus on
structurally related entities in our explication of e-grounding, some of the examples in
the literature may not necessarily carry that sense. For instance, according to Schaffer
(2000), a Swiss cheese grounds its holes, or natural properties ground moral properties.
Whether or not such examples can count as inatances of true e-grounding statements, we
find the ‘constructional’ intuition behind e-grounding plausible and somewhat crucial in
the discussions to follow.

*That said, however, it's not at all obvious whether or not fgrounding is a special kind

of e-grounding. We will return to this point when we introduce the e-grounding principle
S, blow.



o Ifa e-grounds b and b e-grounds c, then a e-grounds c. TR

These requirements are especially natural when, as suggested earlier, we
come to think about the relation as somehow measuring the ‘constructional’
profile of entities. Surely nothing is a ‘building block’ of itself. Also, if a is
a ‘building block’ of b, and b is itself a ‘building block’ of yet another thing
¢, then there is a sense in which a i1s a ‘building block’ of c.

Another principle that we would like to entertain is along the lines of this:
propositions, properties and relations are e-grounded by their constituents,
assuming that a suitable sense of relational constituency is in place. For
instance, the proposition that Joe drinks soda 18 e-grounded by Joe, and the
property of drinking soda, and the property of being friends with Gary 1s
e-grounded by Gary and the relation of friendship. As the examples from
the beginning of the section show, assumptions similar to this can also be
found, in implicit or explicit forms, in the literature.

We would like to entertain a principle along these lines, but since one of
the goals of this paper is to rigorously account for the talk of e-grounding in
suitable formal languages, it would be desirable to recover the constituents
of propositions, properties or relations, from the syntactic structure of the
expressions that refer to them. That 1s, first we would like to find a suitable
notion of constituency for relational entities in our formal language that
captures our intuitions about the constituency of relational entities (which
we rigorously will at §4); once we have such a notion pinned down, our
principle will be as follows:

o FEntities picked by expressions are e-grounded by the things that are
picked by the constituents of those expressions. S

Thus, for instance, we would like to say that the proposition Joe is sleeping
18 e-grounded by Joe and the property of sleeping because the sentence
expressing that proposition—' Joe is sleeping’—has as constituents the name
*Joe" and the predicate ‘is sleeping’.

some qualifications about S, and in particular its propositional fragment,
are in order. First, notice that in 5 we're not taking the e-grounds of an
entity to consist only of the things denoted by its constitutive expressions.
(Call the version of S that does so the strong variant.) We're only including
those things in the list of entities that e-ground the proposition, but we are
open, and in many cases, obligated to, allowing for more things to count as
e-grounds of the proposition. (Call the more liberal version of 5 the weak
variant.) We will return to the importance of this choice after we introduce
our next principle.

Second, consider the propositional instance of S, according to which
propositions are e-grounded by the denotations of the expressions which



constitute the sentences expressing them. This principle, in either of its
strong or weak readings, clearly imposes some structure on propositions.
But how much structure do we really need for this to go through? The most
granular account of propositions available in the literature take propositions
to almost exactly reflect the syntactic structure of the sentences that express
them, in a way that two propositions F'(a) and G(b) are the same only if F
and & are the same, and a and b are the same; call this identity condition
STRUCTURE (see, e.g., Kaplan 1989[1977]; J. King 1996; J. C. King 2009

Russell 1903; Scoames 1987, for such structured accounts of propositions).
But endorsing the weak wvariant of S doesn't necessarily lead to STRUC-
TURE. For consider the pair of propositions Sarah lives in LA or John is
happy and John is happy or Sarah lives in LA. By STRUCTURE, these two
are different propositions, but by S, they have the same grounds; there's
nothing else that tells us whether or not they are identical. So as long as
we adopt the weak variant of S, we don't need to endorse highly structured
accounts of propositions along the lines of STRUCTURE.®

That said, however, even weak S would presumably require enough struc-
ture that coarse-grained views of propositions, such as Booleanism (Bacon
2018; Dorr 2016), would become difficult to maintain. For example, accord-
ing to Booleanism, the sentence ‘John is happy’ and its self-conjunction,
*John 18 happy and John is happy’, express the same proposition becanuse
they're provably equivalent, but under any plausible sense of syntactic con-
stituency, the former sentence is a constituent of the latter, so, by S, the
proposition expressed by the latter is e-grounded by the one expressed by
the former, hence they have to be distinet due to IR. This i1s one of the major
conflicts of our project and some of the rival views in recent metaphysics,
where such coarse-grained accounts of propositions stand out.”

=0, if the instances of S that concern propositions are true, then propo-

%0n the other hand, it can be readily seen that the strong variant of S leads to the
highly granular picture of propositions manifested by STRUCTURE. For by strong S, F(a)
is e-grounded enly by a and F, and G'(b) is e-grounded only by b and . Now, if F'(a) and
G(b) are the same, they should have the same grounds; in particular, F(a) also only has
b and & as its grounds. It then follows that {a, F'} = {b, G}, which, only plausibly results
in F being &, and a being b. {Other possibilities manifest type mismatch in any language
where predicates and names are considered as members of different syntactic categories.)
Mow, it can be shown that STRUCTURE i8 inconsistent with simple type theorv due to
the Russell and Myhill paradox | Goodman 2016; Hodes 2015; Myhill 1958; Russell 1903;
Uzquiano 2015). But even so, we can still admit STRUCTURE since it is consistent with
the ramified type system which we will eventually adopt in this paper. This consistency
is established in Anonymous (MS|[c]).

" Another related conflict consists in the tvpe systems that we use: while views like
Booleaniem extract metaphysics from simple type svstems, we cannot capture the tallk of
entity grounding within such systems (as this paper shows) and have to deploy ramified
type systems. in the end.



sitions cannot be too coarse-grained. That said, however, we will see in the
next two sections that it's still possible to argue that propositions, properties
and relations have to come in levels, even if propositions aren’t structured
at all. In fact, in §4 we will see that it's only essential for non-propositional
types of relational entities to be structured in certain ways, for ramification
to go through unless certain assumptions regarding quantificational state-
ments are in place (more on this shortly). In any case, we find the propo-
sitional instances of S plausible, and in the rest of the paper, we put them
out in the open and leave it to the reader to choose whether or not to accept
it. We will revisit and discuss this choice and its implications later in the
paper.

Finally, earlier we argued that due to scope differences, f-grounding and
e-grounding cannot be identified. But we also brought upon the natural
question of whether or not f-grounding can be considered as an instance of
e-grounding. Our principle S answers to this negatively. Consider again the
fact that John 18 happy. Assuming that John is happy 18 a constituent of
John is not happy, from & it follows that the former e-grounds the latter.
But of course, we can't say the same thing about f-grounding, not at least
under a factive conception of f-grounding, according to which the relata of
grounding statements should be true.®

The final assumption that we make about e-grounding is this:

o Quantificational propositions are e-grounded by all the entities they
non-vacuously quantify over. Q

For example, consider the proposition every indindual is self-identical. By
() this proposition 1s e-grounded by every individual. On the other hand, we
don't want to say that every property of individuals is such that Mike lives
in Chicago 18 e-grounded by every property of individuals. There's a sense in
which Mike lives in Chicago in no way uses every property of individuals as
a ‘building block’. For instance, the property of jumping off a chiff seems to
play no contribution in the construction of the proposition in question. This
15 why it's important to assure that () concerns non-vacuous quantification.

A natural way to motivate @ 18 via construing universal and existen-
tial quantification as ‘long’, possibly infinite conjunctions and disjunctions,
respectively. In that case, () will become a special case of a more gener-
al version of S, where structured propositions with infinite constituents are
allowed.”

% Accordingly, non-factive grounding might have a different status in this regard, and
in fact, be a special kind of e-grounding. See Fine (2012) for more on the distinction
between factive and none-factive prounding.

The idea of reducing quantificational sentences to infinitary conjunctions or disjunc-
tiona goes back to the school of logical atomism (see, e.g., Russell 2000[1018|, lecture 5,



Notice, however, that such construals aren’t necessary for committing
to (). It just seems quite natural and intuitive to think of, e.g., universal
quantification as somehow built out of the things it quantifies over, even if
it’s not construed as a conjunction. Phenomena like this, where an entity
that uses up, as it were, all of a kind in its construction falls out of the range
of the things it uses, aren’t unheard of. Set theory is a good source of such
examples. For instance assuming that A4 is a set, the singleton {A}, which,
in a way 18 ‘constructed’ out of 4 with a set-formation operation, doesn't
belong to A.1°

As another example, consider the way ordinal numbers are constructed in
set theory: w 1s constructed through a union over all natural mimbers, and
itself falls out of their realm; w +w 18 constructed by consuming all ordinals
of the form w + 1, for natural ¢, and itself falls out of them, and so on.
This hierarchical construction of transfinite ordinals by unioning over all
numbers beneath them needn’t be cashed out in terms of ‘infinitary sums’;
it 15 an independently plausible and useful construction. Yet another rich
source of such objects 1s category theory. In general accessible categories are
(possibly) large categories that are in a certain way constructed by small
categories; e.g.. the objects of the former are colimits of small objects from
the latter and fall out of their range.1!

In any case, now that we have introduced (), we're also in a position
to see why we chose the weak variant of S over its strong variant: this is
mandated upon us by (. For example, by (@), every individual e-grounds
the proposition some individual is distinct from John. Now, it follows, for
instance, that Sarah e-grounds some individual is distinct from John, but
Sarah 18 not picked by any of the syntactic constituents of the sentence,
‘Some individual i1s distinet from John'. That said, however, if take () as an
mnstance of 5, then we end up committing to strong S.

To conclude the section, here's a summary of the hist of our principles of
e-grounding:

o Nothing e-grounds itself. IR

o Ifa e-grounds b and b e-grounds c, then a e-grounds c. TR

for an early objection to the idea). For some recent discussions of the problems such
construals face, in particular, what’s lmown as the ‘totality problem’, see Fine (2012) and
Fine (2017). Throughout the paper, we sometimes make such reductionist assumptions
about quantification, but mainly heuristically; there are, however, wayvs to make rigorous
these assumptions. See the discuesion after Definition 1. for more on this comparison.

19T his is a particularly suggestive example becanse singletons are canonically taken to
be e-grounded by their elements (deRosset 2013; Schaffer 2000). See Fine (1995) for a
gimilar view regarding the ontological dependence of singletons on their elements.

H8ee, e.g., Adamek and Rosicky (1994) for an introduction to accesaible categories.



o FEntities denoted by erpressions are e-grounded by the things that are
picked by the constituents of those erpressions. S

o Cuantificational propositions are e-grounded by all the entities they
non-vacuously quantify over. Q

3 Ramifying Propositions

I now argue that for the principles of e-grounding to be accommodated we

need an infinite hierarchy of propositions, where, roughly put, tenants of
each level are obtained through quantification from those of the lower levels.

In line with this, we develop a formal language and logic that capture such
a stratified universe of propositions as well as the talk of e-grounding based
upon it.

We start with a simple, informal argument showing that our principles,
in fact, two of them, lead to an inconsistency. Then we argue that the
particular inconsistency involved is most naturally and efficiently resoclved
if there are at least two kinds of propositions, where the members of the
second kind are obtained through quantification over all the members of the
first kind. Ensming arguments suggest that there must at least three kinds
of hierarchical propositions, at least four kinds, ..., and for any natural
number n, at least n kinds of them. In general, we will soon realize that
the principles of e-grounding are most naturally and efficiently captured,
without running into those generic inconsistencies, if propositions come in
an infinite hierarchy of levels as described above.

Throughout this section, we focus only on the propositional fragment
of the principles above—instances that are concerned with the relation of
e-grounding between propositions. By doing so we can pinpoint the issues
at stake in a setting where there aren't many tvpes of entities awvailable.
Not only this avoids certain heavy-handed metaphysical commitments to all
sorts of higher-order entities, but it also helps us to see in the clearest way
why we need propositions to come in a ramified hierarchy, without being
distracted by other entities and the structural complexities associated with
them. Moreover, as we will see, capturing the propositional fragment is
considerably easier when it comes to developing formal languages and logics
for e-grounding. The next section will look up to this section as a role model
and argue for stratifying other relational types into infimtary levels.

Before we start, there's an important methodological remark that needs
to be explicated. Throughout this section, as well as the rest of the paper,
we assume that the principles of e-grounding from the previous section ar-
ticulate substantive constraints on e-grounding that we aim not to abandon.
In other words, we take these principles true by stipulation and set out to



explore their implications as well as the formal systems that can capture
them. Aside from the inert plausibility and naturality of the principles,
which we discussed in the previous section, it is this lovalty that, as we
will see shortly, quite naturally leads to hierarchical propositions, and later
on, other relational entities in a way that is best captured by ramified type
systems. On the other hand, and as has been advertised several times, the
latter is what provides a unified and natural solution to a cluster of puzzles
and paradoxes of ground and grain. The intuitive appeal of our principles,
espoused with other abductive, large-scale considerations surrounding them,
gives us enough confidence to hold onto these principles as much as possible.

With this methodological remark out of the way, we now offer a se-
ries of arguments to the effect that there must be infinitely many kinds of
propositions that behave in the way explained earlier. The arguments here
are informal; a formalization of the talk propositional e-grounding and the
arguments here will follow later in the section.

We first start by giving an informal presentation of a paradox that arises
from our principles of e-grounding. By (), any proposition p which states
that every proposition is such and such (e.g., 1s true or false) 1s e-grounded
by every proposition. So p cannot be among the propositions in its range
of quantification, otherwise, contradiction ensues by IR. So the range of
quantification in p consists of all propositions, and yet p cannot belong to
it, hence contradiction.

There are two cholce options in response to this argument: (1) at least
one of IR or () is false, or (11) there is no such proposition as all propositions
are such and such, or rather, p doesn't express any proposition. In line with
the methodological remark above, we avoid option (1). But option (11), with
no further explanation attached to it, doesn't sound satisfactory either: the
sentence ‘Every proposition 1s such and such’ supposedly denotes something.
In fact, anyone who commits to second-order quantification as a reliable
source for doing metaphysics would admit that p expresses a proposition
(e.g., Fine 1970; Kaplan 1970; Willlamson 2013). So, something needs to
fill in the gap if p is taken not to be express a proposition.

To get around this tension, we could posit certain new types of entities
that behave very much like the good old propositions but aren’t proposi-
tions, strictly speaking. That 1s, in line with option (i), we take it that
p doesn’t denote to a propesition, but it does denote to something akin
to a proposition., only more sensitive, in its nature, to quantification. So,
there should be at least two kinds of proposition-like entities, one of which
15 obtained by quantification over all members of the other. Call the latter
level-1, and the former level-2 propositions. These namings seem appropri-

ate: as we will see later, leveled propositions interact with each other, and
exhibit truth-functional behaviors very similar to how the good old propo-
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sitions do. In fact, leveled propositions together will play the theoretical
roles that propositions are supposed to play alone, but (it would seem) also
accommodate the talk of e-grounding, without running into inconsistencies.
In the light of this, if one still insists on keeping the term ‘proposition’ in
their metaphysical vocabulary, one can then take the term to ambiguously
refer to either level-1 or level-2 propositions.

This segregation also gains support from our intuitions about the notion
of e-grounding in terms of ‘construction’ and the constructional profile of
entities: 1if a e-grounds b, then a 1s, in a sense, a ‘building block’ of b.
In particular, we took quantificational propositions to be ‘constructed’ out
of the things they quantify over. By considering ¥gg as a member of the
collection that it ranges over, however, we'd be treating Vgg as if it's one of
its own ‘building blocks,” which doesn’t sit well with that intuition.!?

But the satisfaction that a bi-level account of propositions brings is only
temporary. For we can similarly argue that there are at least three kinds of
propositions. Suppose, on the contrary, that there are exactly two kinds of
propositions, level-1 and level-2 propositions, as described above. Suppose
also that () 1s naturally revised for the new propositions: propositions that
quantify over level-i propositions are e-grounded by all level-i propositions
(where i = 1,2). Given our assumption, the proposition p that every level-2
proposition is such and such should be either of level 1 or 2. Also, by Q. p
18 e-grounded by all level-2 propositions. Now, suppose p is of level 1. But
since at least one level-2 proposition ¢ (e.g., the proposition that all level-1
propositions are true or false) is e-grounded by all level-1 propositions, the
proposition g must also be e-grounded by p. By TR, p e-grounds itself, which
goes against IR, And if p is of level 2, then again it e-grounds itself. So p
must be denoting a third kind of entity that’s alkan to leveled propositions,
but 1sn’'t one of them; though it's obtained from level-2 propositions via
quantification. Call this new, proposition-like entity a level-3 proposition.

This line of argument clearly can be generalized to the effect that there
are at least four, five, ..., n levels of propositions, for any natural number
n, that behave expectedly, as explained above. So there must be infinitely
many levels of propositions with the expected hierarchical construction. No-
tice that, given the similar e-grounding behavior of exastential and universal

12 Another helpful way to see the izsue at stake is to revisit our heuristic way of con-
struing universal quantifications as infinitary conjunctions (similarly for existential quan-
tifications construed as infinitary disjunctions). Suppose Wp¢ 12 just a ‘long’, infinitary
conjunction @) A @) A ... in a language with infinitary conjunctions and enough con-
stants for all propositions. Then, in general, instantiating a universal statement ¥pé with
itself will amount to considering the long conjunction ¢{¢) A ¢{7) A ... as one of its own
conjuncts. Under a sufficiently structured view of propositions, which 18 presupposed by
our principle 8, it’s no more appropriate to congider the ‘long’ conjunction as one of its
own conjuncts than it is to take the ‘short’ conjunction ¢ A as one of its own conjuncta.
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propositions (both being e-grounded by the things they quantify over), sim-
illar arguments can be given, using existential propositions, to the effect that
propositions have to come in levels.

In the rest of this section, we aim at crafting formal langnages that rigor-
ously capture the propositional fragment of the talk of e-grounding and the
arguments above.!* Our starting point is the simple language of second-
order logic, where quantification over propositions (construed as nullary
predicates) 1s permitted. Formal languages that allow for quantification
into sentential position appear in a number of places in philosophy, none
of which have anything to do with notions of metaphysical priority such as
e-grounding (see Fine 1970; Kaplan 1970; Williamson 2013, for some works
along these lines). We, in particular, will be working with a further im-
poverished language with propositional quantification, where no first-order
entities (l.e., individuals) play any role. So the only instances of structured
propositions are going to be Boolean combinations of propositions, or when
we add an operator for e-grounding, propositions that say of e-grounding
relations that hold between propositions; no (non-nullary) predicates are
avallable in the present language.

S0, let £; be the language of propositional logic with the addition of
propositional variables p. g, r... and universal quantification over them. We
assume that formulas are closed under Boolean connectives and, for the
sake of simplicity, that our language doesn’t have any non-logical constants.
Here's the abstract syntax of £, in BackusNaur form:

El = F|_'¢l]| qi!']ﬂ qﬁ" 19{;"¢'|EIF¢; W]lEI'E o€ {_’:H:Vr'ﬂ'}ld

Each legal term of this language is called a formula. Free and bound variables

are defined in the usual way, and represent the set of all free variables of a
formula ¢ with FV (¢). A formula with no free variable is called a sentence.

¥The approach emploved here is somewhat similar in spirit to the way Fritz (MS)
motivates, in a step-by-step manner, simple type theory as a way of capturing some
plausible talk of properties in English. What we will be doing, instead, is to motivate
certain formal languages, also in a step-by-step manner, that alm at capturing our talk
of e-grounding. There's a slight difference in our approaches, though: Fritz (MS) works
with a more abstract sense of langnage, where he fixates upon certain desiderata that
his desired languages need to satisfy. We, on the other hand, start with some concrete
examples of langnages that already exist in the literature and have gained traction by
gsome philosophers and start improving upon them, step by step.

141n this paper we assume that all Boolean and guantified statements come as primi-
tives, and not interdefined in terms of the other ones (e.g., defining A in terms of v and
—). One reason for this is to remain maximally neutral about the nature and granularity
of logical connectives and quantifiers, without committing to anyv prejudices about their
granularity. Moreover, in later sections where we choose a certain approach to present
the logical vocabulary (coming in the form of constants, instead of clauses), the princi-

ples of e-grounding stated for a set of primitive operators may not be generalized to the
interdefined ones.
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Proor SysTEM +Lt:

Arioms:
e Axioms of propositional logic PC
 ¥po— o[y/p] Ul
o ¢[¥/p] +3pd EG
o ¥p(¢ > ¢)— (¢ Vpy), where p¢ FV(9) uD
o Vp(¢—>v)— (Ipd > ¢), where p¢ FV(¥) ED

Inference Rules:
o If - ¢ and ~ ¢ — 1, then ~ 1 MP
o If - ¢ then + ¥po UG

We add an entity grounding operator <« to £, to be able to express our
desired principles of e-grounding in the extended language:

L == p|-¢|dod|¥peo, where o€ {—,«, v, A, «}.

We can now express our informal prineciples of e-grounding from the previous
section in the language £7.

ProoF SyYSTEM 417

The extended proof system 57 is just ~£t plus the following axioms:

o (Pt A vx) > Py TR,
. -(6«0) IR,
o b (D0U) A< ($0¥)A (P «0), Where o€ {,r,v,A <} S,
o Y« Vpp A« Ipg, where pe FV(9) Q

Notice that, in the statement of 5;, each choice of o amounts to a separate
schema of the logic; we have packed them all together only for convenience

and higher readability. Notice also that in all of the principles above, ¢,
and - schematically stand for formulas.

We can now see rigorously where things go wrong in this system. (In
what follows, we replace the schematic ¢ with ¥Ygg.)

Theorem 1. @ 57 1
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Proof.
(1) Vg« Yqq Qp
(2) -(Vgq «Vgq) IR,
(3) L PC1,2 ]

An immediate reaction to this contradiction is to undermine at least one
of the two principles of e-grounding that led to it, that is, IR, and ¢J,. But
remember the methodological remark from the beginning of the section: we
take our principles of e-grounding to articulate substantive constraints on
e-grounding that we should aim not to abandon. Instead, we try to find
suitable formal languages and logics that can accommodate them. In the
present case, we only started by assuming that £, a relatively well-known
and simple language that seems suitable for our purposes, can do the job
when enriched with an e-grounding operator (hence the language £5), and
we faced an inconsistency using our minimal background logic. So, we do not
conclude that any of the principles of e-grounding involved are false; rather,
we question our cholce of language in modeling the informal, stipulatively
endorsed IR and (). But how do we improve on our languages?

Notice that Theorem 1 essentially formalizes the first informal paradox
that we proposed at the beginning of this section, in response to which we
posited two kinds of propositions—Ilevel-1 and level-2 propositions. An im-
provement of the language that goes hand in hand with this solution, there-
fore, 18 demirable. Since we have it that ¥gg expresses a level-2 proposition
(obtained by quantification over all level-1 propositions), we may impose
a similar structure on the sentences of £,. More specifically, if we assume
that the sentential variable g is of level 1, then we can take the level of
the sentence ¥gg to be 2. Logical rules such as Ul will need to be revised
accordingly, accommodating leveled sentences. As a result of such level as-
signments to our sentences, we no longer will be able to instantiate Vgg,
which ranges over all level-1 sentences, with itself, as it 15 of level 2, and the
proof of Theorem 1 breaks down in its second step.

To accommodate all of this more rigorously in a formal setting, we ex-
plicitly assign types to our sentences, along the lines of type theory. In
simple type theory (higher-order logic), it is a common practice to distin-
guish different kinds of expressions by assigning to them types. For example,
individual terms are assigned type e, propositional terms type (), and n-ary
relational terms type (t1,...,ts), where t;,...,t, are themselves types. For
various reasons, however, we started our project with languages that only
have sentential types. That 1s, so far we have only worked with terms of
type {}, so we didn’t need to write down the types of our terms. But now we
have found a basis for distingmishing two kinds of propositions and sentences
that correspond to them. On the other hand, if we hold onto () as the only

symbol for types, we won't be able to syntactically distingunish sentences
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that stand for different levels of propositions.

S0 we extend our second-order language by adding a new sentential type.
More specifically, we now index the old sentential type with numbers 1
and 2 to explicitly indicate which kind of propositions they stand for. We
reserve the type ()2 for formulas that stand for level-2 propositions, ie.,
ones that are ‘constructed from’ all members of the other kind propositions,
and )/l for formulas that stand for the ‘building blocks’ of the former kind
of propositions. A corresponding revision of the proof system +£t is also
required. In particular, we replace Ul, with two similar principles Ul;, one
for each 7,7 € {1,2}: ¥p'¥¢p; - ¢;[10i/p], where 1; schematically stands for
any formula of level i. The logic F£1 of e-grounding also needs to be revised
in such a way that leveled formulas are accommodated. In particular @
needs to be replaced by two parallel principles (;, one for each ¢, 7€ {1,2}:
iy <« Vgt ¢, where ¢; and 1; schematically stand for formulas of levels j
and i, respectively.

Now, since we're working with leveled formulas, it should be rigorously
decided by the syntax how the levels of Boolean and quantificational for-
mulas are determined by the level of their constituents. For example, what
15 the level of the negation of a level-1 sentence, or the conjunction of a
level-1 and a level-2 sentence? We take any combination ¢ o o of two lev-
eled sentences ¢ and ' to be of the marimum level of them. The reason
for this is that we motivated the talk of ‘levels’ directly via quantification:
for example, we took P{Mp to be of type ()2. So there's no other way for
quantification to lift levels. As for quantified statements, we can say that
the type of YiM¢,, for a formula ¢, of level 7, is of type {)}max{2, 7}, which
is just ()2, where j € {1,2}.

But what about formulas of the form $'"2¢, where we quantify over level-
2 sentences? For all we know at this stage, such formulas will have to be
either of level 1 or 2. But it can be readily verified that either of these options
leads to inconsistencies like the one above. Here's why. (What follows is
a more rigorous reconstruction of the second informal argument that was
given at the beginning of the section.) Suppose, say, Pi2(pv —p) is of level
2. Then since it quantifies over all level-2 propositions, by (Je it should be
e-grounded by itself, which contradicts irreflexivity. So Pp'¥2(p v —p) must
be of level 1. But now on the one hand, according to Qa, PU2(p v —p) is
e-grounded by all level-2 propositions, and on the other hand, at least one of
these propositions (e.g., P (pv—p)) is, by Qu, itself e-grounded by all level-1
propositions, including ¥ (pv-p). By transitivity of e-grounding it follows
that ¥ (p v —p) e-grounds itself, which again contradicts irreflexivity.

In line with the resolution of the informal, corresponding argument at
the beginning of the section, we posit a third kind of propositional type to
avold the present inconsistencies. The syntax of the resulting langnage, as
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well as the principles of the logic governing it, also need revisions similar
to the ones offered at the previous stage. It can easily be seen that similar
inconsistencies arise as before and that we need a fourth kind of proposition-
like entity to avoid the ensuing inconsistencies.

As 18 readily verified, this process goes on and on ad infinitum. That
is, at every level n, we are going to need to posit a sentential type ()n+1
for level-n sentences. In general, contimuing the process of improving our
languages and their logics leads to an infinite sequence of language pairs
L1,L5, La, LT, L3, L7, ... and corresponding logic pairs F51, 27 | L2 L3 Lo
55 ., all attempting to capture the notion of e-grounding and its princi-
ples at a certain stage, but facing a familiar inconsistency.

Here's a minimal language £% and a corresponding proof system 5=
that encompasses all the useful type distinctions and rules that these lan-
guages had to offer, but without running into similar, generic inconsistencies.
We assume that for any ¢ > 1 we have a denumerably infinite set Varl? of
variables of type (). Our formulas are recursively defined as follows:

Definition 1 (£ ). The formulas of £ are defined as follows:
1. If pi% € Var'¥ then p'¥ is a formula of type ()i,
2. If ¢ is of type ()i, then —¢ is also a formula and of type (),

3. If ¢ and v are respectively formulas of types ()f and ()f7, then do is
a formula and is of type ()fmax{i, j}, where o € {—+, « v, A, <},

4. If ¢ is a formula of type ()j, then '$¥¢ is a formula of type {)fmax{i+1, j}.

We can now see why the construal of quantification as conjunction or
disjunction, in a literal sense, can break apart. Given Definition 1 and the
related discussions, the statements of quantification but not conjunction
shift levels of sentences. For reasons like this, in this paper we rely on the
construal of () as an instance of S mostly for heuristic purposes.15

Here's the proof system +£=.

ProoF SysTEM L%

Arioms:

15That said, however, there are ways to make the analogy more appropriate, without
running into such level-mismatches. For instance, instead of taking the level of, say, the
conjunction ¢; A i of a level-i formula ¢; and a level-j formula #; to be max{i,j}, we
could take it to have the level max{i,j} +1. In that case, we can add an infinitary
conjunction operation to our language and just generalize this level-asgsignment to it to
get our desired level-assisnment for quantified statements.
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1. Leveled axioms of propositional logic!® PCy

2. Vpliho; — d;[vi/p] UL
3. j[¥ifp] = IpM g5 EG;
4. VpUR(d; = ) = (&5 = Vp'¥iyy), where p¢ FV(¢:) UDyjn
5. Wplk (¢; = i) = (Ip @; — 3 ), where p ¢ FV (1) EDyjp
6. (¢ =yn Y5 <) = dixi TRijk
T. (¢ « ) IR
8. ¢ « (dioy) A U < (diot;) A (& < ~¢;), where 0 € {+, 4, V, A, «]}

Sij
9. 1 < Vpiite; A iy « Fpfg;, where pi¥t € FV(g) Qi

Inference Rules:
10. If + ¢y and + ¢ — 10y, then + vy MP;;
11. If - Qb{[’fjfpmj], then 'ﬂiwj l;‘.'H UGH

Where in all of the principles above, ¢;,1; and ~y are doubly systematic:
@, 1, and « being any formula and i, j, k € I+,

We conclude this section with a an important remark concerning the
relationship between the principles () and S. We mentioned earlier that () can
be endorsed plausibly and independently from S. In other words, accepting
() doesn’t hing on construing statements of quantification as some ‘long’
Boolean sentences. If one 1s on board with us in this, then one can be neutral
about, or even against any structured picture of propositions. But even if,
for whatever reason, one accepts () only as an instance of S, we noticed in
§2 that it's still not necessary to commit to highly granular propositions
that are susceptible to paradoxes of grain, such as the Russell-Myhill result.
Either way, this puts those who reject structured propositions based on
such inconsistencies (e.g., Dorr 2016; Goodman 2016; Uzquiano 2015) in
an awkward position: they are now offered independent reasons to admit a
ramified reality, which, if they do, they end up having access to the resources
that allow for highly structured propositions, as well.

In the next section, we will expand the scope of our project from the
propositional fragment of e-grounding to all that can be said about it. Ac-
cordingly, we will expand our linguistic resources by adding, among other

1%For instance, ¢, — (Y~ dm ) in place of ¢ — (3—¢@). where each indexed letter doubly
gchematically stands for a formula of a certain level.
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things, variables and quantificational tools for individuals as well as rela-
tional entities of different types and arities. In a similar way to this section,
we will also try to find appropriate languages that can capture the talk of
e-grounding and its logic.

4 Relational Structure and Ramification

We now extend the scope of our project by aiming at capturing the talk
of e-grounding in its entirety. In particular, we will allow for statements
of e-grounding that hold between entities of any pair of types: individual-
s e-grounding properties, propositions e-grounding operators, relations and
individuals grounding propositions, etc. We can argue that, as long as prop-
erties and relations are properly structured, they should come in infinitary
hierarchies of levels. The argument i1s smilar in its spirit to the one from
the previous section to the effect that propositions should come in infinite
levels. First, we assume in the background that properties and other type-
s of relations can have structure. For instance, it seems plausible to say
that the property of being loved by everyone has the relation of loving as a
constituent, or the property of being identical to Mike and such that Mike
has some property has both Mike and the proposition that Mike has some
property as a constituent.

Later in the section, we will propose a rigorous account of relational
structure and constituency, but for now, consider the latter property, namely,
being tdentical to Mike and such that Mike has some property. We can argue
that this property is e-grounded by itself. Here's how: by S, the property is
e-grounded by its constituent proposition, Mike has some property. On the
other hand, by (), that proposition itself 15 e-grounded by all properties of
individuals. So by TR, the property of being identical to Mike and such that
Mike has some property i1s e-grounded by all individual properties, including
itself, which goes against IH.

Similar to the case of the propositional fragment, and given our strong
commitment to the principles of e-grounding, it can be argned that the most
viable option to resolve this contradiction while retaining those principles is
to posit a new kind of individual properties whose inhabitants are obtained
through quantification over all members of the other kind. The rest of the
story i1s also similar to the one from before: we can run analogous arguments
to the effect that there has to be at least 3, at least 4, and for any natural
number n, at least n kinds of individual properties. As before, and to make
these kinds traceable, we assign levels to these relations. Other relational
entities can be argued to come in infimtary hierarchies of levels.

Throughout the rest of this section, we will devise formal languages that
can rigorously express statements of e-grounding in ther full generality and
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capture the line of argument for segregating relational entities into infinitely
many levels. Now, while the spirit of the project here 18 quite similar to
the one from the previous section, the syntactic complexities involved are
considerably more complicated than the ones found there. In particular,
we will see that given the way many predicates are constructed via lambda
abstraction in higher-order languages, and certain complications attached to
free and bound variables in A-terms, finding a notion of constituency that
properly and rigorously capture our intuitions of structure and constituency
for properties and relations 1s, by no count, a trivial task and deserves special
attention.

In what follows, we add wvariables and quantifiers of different types into
our langnage. In the previous section, we were only interested in the propo-
sitional fragment of the talk of e-grounding, so we only focused on propo-
sitional variables and quantifiers. But now we want to capture everything
that can be said about e-grounding. So, we add variables and quantifiers for
individuals, propositions and relations of different arities.

We start with types. Simple types provide a way of tracking the gram-
matical categories of terms.!”

Definition 2 (Simple Types). The set T* of simple types is recursively
defined as follows: e € T*, and for any t;,....t, € T°, {tg,....t,) € T°.

When n = 0, the relational type is shown by (), which is the type of
propositions. We assume that for any t€7* there's a denumerably infinite
set of variables Var* of type ¢ and a (possibly empty) set of typed constants
CST*. We will reserve CST* for the set of all constants of type . We define
the sets of all variables and constants respectively as Var := UerrVar® and
CST := |y~ CST".

In the previous section, we introduced the logical statements of our lan-
guages through clanses—what’s sometimes called a ‘syncategorematic’ rep-
resentation of logical statements. For instance, in Definition 1 we took it
that whenever ¢ is a formula, then so is —¢ (similarly for other connectives
and quantifiers). Introducing the logical vocabulary via clauses is common
in many textbooks and papers on logic, but there's an alternative, cate-
gorematic approach that specially dominates the literature on simple type
theory (see, e.g., Church 1940; Dorr 2016; Henkin 1950; Mitchell 1996). Ac-
cording to the alternative approach, logical connectives and quantifiers are
constants of certain types, and logical statements are formed using a certain
operation called application. For instance, we take negation to be represent-
ed by a constant - of type ((}}, and a negative statement like —¢ to be a

1" The type theories presented in this paper will be relational (as opposed to functional).
Also, for higher readability, the style of typing will by Church-fyping (as opposed to Curry-

typing), where the types of variables are fixed and attached to them as superscripts,
instead of depending on ‘contexts’. Alternative formulations are possible as well.
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shorthand for application of the constant — to a term ¢ of the appropriate
type {}. which is shown by —(¢). (A similar attitude can be taken for other
connectives and quantifiers.) Below we will discuss some of the advantages
of treating the logical vocabulary categorematically, using typed constants.

In any case, here’s the list of our primitive, typed logical constants:
negation — of type (()), implication —, disjunction v and conjunction A
each of type ((),(}}, and for any type t, there is a constant =t for identities
between {-type entities and two constants for quantification, one for (higher-
order) universal quantifier ¥* and one for (higher-order) existential quantifier
3, each being of type ({t})}. Notice that our quantifier constants apply to
predicates of t-type entities, not those entities themselves. As will become
clear through the proof system, however, there won't make any difference
in the truth-conditional behavior of the logical statements in the constant-
based and the clausal approach.

Definition 3 (Simple Terms). The terms of simple type theory (STT) are
recursively defined as follows: (i) if ot € Var®, then xt is a term of type t;
(ii) if c € CST", then c is a term of type t; (iii) if ¢ is a terms of type () and
for n = 1, the variables 1:511 ..., T are pairwise distinct, then }-'u:ii, ey I 18
a term of type {t,,...,t,); (iv) if 7 is a term of type (t;,...,%,), where n > 1,
and for each i = 1,...,n, oy is a term of type #;, then 7(,...,04) I8 a term

of type ().

The operations at (i11) and (1v) are called, application and abstraction,
respectively. We sometimes drop parentheses when no risk of ambiguity,
and write e.g., Fa instead of F(a). We call a term of type {} a formula,
and when it contains no free variables, a sentence. We use the letter ¢ with
or without subscripts as metavariables for types, lower-case Greek letters
T,0,@. 1, ... with or without subscripts as metavariables for general terms,
and lower-case or capital English letters z,y, z,p,q. XY, Z, P,(), with or
without subscripts, as metavariables for variables. The notions of free and
bound variables of terms, substitutions of terms for variables, and being free
for a variable are defined as usual. We show the set of free variables in a
term o by FV (o). Also, the set of all terms of STT is denoted by TERM,.

From now on, by convention we write things ke ¢ v or & = y to
indicate the application instances v(¢, ') or = (z,y), respectively. Similarly,
quantified statements of the forms ¥Wr'¢ and Jz'¢p are now construed as
shorthands for application instances ¥*(Azt.¢) and 3*(Azt.@).

Before attending to the logic of our typed language, let's briefly discuss
some of the advantages of our categorematic, constant-based approach to
logical statements. Not only this approach 18 more elegant than the alterna-
tive, syncategorematic approach, with fewer axioms or term-formation rules
in place and a unified way (i.e., application) to produce logical statements,
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but 1t also has the metaphysical advantage of allowing us to intellipibly ask
certain questions and theorize about the granularity of the logical connec-
tives and quantifiers—an option that is not available to the rival approach.
For instance, one could theorize about whether the operation of disjunction
should be treated as a primitive relation or identified with truth-functionally
similar properties such as Apg.—(-pa—q) or Apg.(—p—+g). To pre-theoretically
settle this question 1s to prejudge matters of grain. But more importantly,
to be unable to even ask such questions rigorously would be a loss of expres-
siveness. It 1s only the categorematic approach that allows for expressing
and defending any of the positions above. This, in effect, constitutes our
main reason to choose a categorematic vs. syncategorematic treatment of
logical statements in this paper.!®

We now spell out the proof system for our simple type theory. In what
follows, expressions like 7; will stand for tuples like (&, ...,0,), and [7;/T;]
stands for the simultaneous substitution of #;'s with #'s in 7.1 Also, in each
case, 1t's been assumed that the substitutants are free for the substituent.
Intuitively, that guarantees that (i) no bound variable is allowed to be sub-
stituted (that is, the notion of substitution only applies to free variables),
and (i1) no free variable can get bound after substitution.

Proor SysTEM &:

Arioms:
1. Axioms of propositional logic PC
2. (Al .. zir.@)(d;) < [7,/%;]¢, where the type of o; s t; (1= 1,...,n)
Be

3. V'F' —» Fg, where F and & are, respectively, of types {t) and ¢ Ul
4. Fo - 3*F, where F' and o are, respectively, of types (t) and ¢ EG

5. ¥V{(Azt.¢—Fx) — (¢p - YF), where F is of type (t) and = ¢ FV(¢)
UD

1%With that in mind, one can object to the categorematic approach by saying that,
in English, the talk of, e.g., identity, gquantification and many other relations and logical
operators doesn't seem to be bound to tvpes—we seem to use the same locution of ‘is
identical to’ or ‘for all’ for most if not all claims regrading individual, properties and
relations. 5o, contra to the popular view, the thought goes, the cateporematic might
fall short of capturing the talk of properties and quantifiers in English. See footnote 21
for a related discussion regarding the categorematic ve. syncategorematic treatment of
e-grounding statements, and a potential, novel reply to these sorts of objections.

19For a rigorous definition of subatitution, see Mitchell (1996, p. 53). Mitchell’s defi-
nition is given for functional type theory. Similar definitions can be given for relational
type theory.
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6. Vt(Azt.Fz—s1) - (ItF - o), where F is of type (t) and = ¢ FV ()

ED

7. o=tg, where o is of type ¢ REF

8. o=tt = (Fo—F'7), where F is of type (t} LBZ
Rules of Inference:

9. If - ¢ and + ¢ — 1), then + 1 MP

10. If v Fzt, then + ¥*F, where F is of type (t) UG

Now that we have our primary language set up, we need to find a way to
rigorously define a suitable notion of syntactic constituency that reflects the
sense of constituency that we've seen earlier through examples of structured
properties and relations. In other words, we want a syntactic eriterion that,
whenever applied to any relational term reveals the structure of the thing
denoted by the term. For example, we want to find the constituents of the
property of being friends with Gary by ‘scanning through' the predicate
that expresses it in our language, namely Azr®. F(z, g), where F is a constant
standing for the relation of friendship, and g is Gary’s name. In this specific
case, we want to systematically recognize g and the F' to be among the
constituents of the predicate, because that would reflect the fact that the
property in question has Gary and the relation of friendship as a constituent.
Such rigorous syntactic specifications matter to us in particular due to the
way we have introduced our e-grounding principle S, as relying on the syntax-
semantics interplay. Recall that S, in 1ts most general form, says that entities
denoted by syntactic expressions are e-grounded by the things picked by the
constituents of those expressions.

In general, we take it that many properties and relations that are ex-
pressible in our language by the lambda device are structured, and we want
to find a general way to specify their constituents through the A-terms that
denote to them. But implementing the ideas of a structuredness and con-
stituency can be perplexing in the presence of A. For example, even though
we may convincingly find the constituents of the property of being friends
with Gary from the corresponding A-term, Az F(z,g), it's not clear how
we can pinpoint the constituents (if any) of the property of having every
property of individuals from its corresponding A-term, iLe., the predicate
Aze ¥Y (&Y (z). An immediate, though naive thought is to take YY1l ¥ ()
to be a constituent of that predicate. But that sentence doesn't express
a unique proposition: depending on what value x takes by an assignment
function, it expresses a different proposition.
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In general, it's not clear what's the contribution of abstraction or free
and bound variables involved in the determination of the constituency of
A-terms. In the rest of the section, we will explore three main options
regarding constituency, and choose one of them as the correct definition of
constituency. But as will become clear in the end, all of them can be used
equally well to motivate examples where stratification of relational types is
needed. The rest of this section mainly attempts to find the best account of
relational constituency among the three options that will be discussed.

We start with the broadest sense of relational constituency, which 1s the
same as being a sub-expression. The 1dea 18 to take constituents of terms, in
general, just to be their sub-expressions. (Sub-expressions of terms are the
terms that contribute to the recursive definition of them, as expressed for all
terms in Definition 3.) For instance, by SUB we have it that the predicate
Aze F(z,g) has F, g and r as constituents. Or that Az*. (W' Fy)az =a has
as constituents the sentences (Vy* Fy) A z = a, W'F'y, r = a; plus all of their
constituents, i.e., A, =, a, ¥, y, Fy and F, as well. Similarly, Azt V2*R(z, )
has as constituents, Vz*R(z, ), V¢, z, R(z,z), R and =.

Thus here's the first attempt:

e T 18 a constituent of o iff T 18 a sub-expression of . SUB

SUB 18 the most liberal account of constituency To motivate SUB, re-
member that in the case of the propositional fragment of e-grounding (see
§3), the constituents of a Boolean expression were taken to be the things
connected by the relevant connectives: constituents of a conjunctive sen-
tence were taken to be its conjuncts, etc. We can generalize the idea for
applicational terms in STT, by taking the constituents of an application
term F'(a) to be F, a and their respective constituents. One might further
expand the notion of constituency of terms, including A-terms of the general
form Am‘li,...,xi“.qi!'l, as well.

But the sub-expressional sense of constituency is too liberal, and in some
cases, unmotivated by our metaphysical considerations. While 1t seem-
s natural to say that the property of being friends with Gary, expressed
by Az®.F(z,g), has Gary and the property of friendship as constituents, it
seems 1mplausible to say the same for the vanable x, as due to its bound-
ness, none of the values assigned to it seem to have to do anything with
the property of being friends with Gary. For example, x could be assigned
Mike, but Mike doesn’t seem to have anything to do with structure of the

property in question—certainly doesn’t seem to be a constituent of it.*"

0f course. one may want to take, e.g., any property to be e-grounded by all the
propositions obtained from it. In that case, the property in question will in particular
be e-grounded by all propositions obtained from it, and that includes the proposition
that Mike i= friends with Garyv. From 5 and propositional TR, it will follow that Mike
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=0 we need to impose some restrictions on our imtial definition of con-
stituency, for the sake of metaphysical plausibility. The examples above sug-
gest that we need to rule out bound occurrences of variables as constituents.
More generally, they suggest that every free occurrence of a variable in the
constituent term should also occur free in the term that it's a constituent
of. Clearly, limiting constituents to closed sub-expressions satisfies this:

e 7 15 a constituent of o iff 7 1s a closed sub-expression of o. CLOSED SUB

From CrLoseED Sus it follows that the property of being an individual
such that Mike 1s drinking—expressed by Az®. Dhn—has the proposition D'm
that Mike is drinking, and accordingly, both Mike and the property of drink-
ing as constituents. We will also have it that the property Az®.¥Y (&Y (m)
of being an individual such that Mike has every individual property is struc-
tured and has as a constituent the proposition ¥Y )Y (m) that Mike has
every individual property.

But the closed conception of constituency is a somewhat too restrictive.
Consider, for example, ¢ = Az*.L(y, ), where y is a variable of some type
t' and R is a constant of type (t',t). With CLOSED SUB we can say that
L 18 a constituent of &, but we can’t say that about y. But we would want
the free variable y to be a constituent of o, because for any wvalue a that y
is assigned, a is in fact a constituent of the property picked by Azt.L(a,z).
For instance, if L stands for the relation of loving, the property of being
loved by Sarah, o := Azt.L(s,z), seems to have Sarah (s) as a constituent.

S0 perhaps the best idea is to just hold onto or sharpen the two restric-
tions that we had ended up with in discussing SupB, as what determines
a syntactic notion of constituency that suitably accommodates our favorite
sense of constituency that holds between real entities. Let's see some more
examples. Suppose 7 = Ay*'.((Vz'!Fz) A Gz). We would like the universal
statement ¥z*F'r to be a constituent of o, because it's a closed term. But
not F'z, because the free occurrence of x in Fir doesn't occur free in o. Nei-
ther 18 the occurrence of x in F'r a constituent of &, for the same reason.

e-grounds the property of being friends with Gary. But this option doesn’t seem to
git well with our constructional intuitions of e-grounding. Remember that we took e-
erounding to somehow reflect the sense of ‘construction’ involved in entities; clearly, no
guch sense can plausibly be given to justify the claim that Mike e-grounds the property of
being friends with Gary, or the tentative principle that properties are e-grounded by their
propositional values. Similarly, it sounds unmotivated to say that the property denoted
by Ax®.¥z°L{z.r) is e-grounded by ¥2*L(z,x): for any assignment of values to variables,
this formula returns an entirely different sentence. Suppose L stands for the property
of loving. Then for any value a of x, ¥2°L(z,a) expresses the proposition that everyone
loves a. But no such proposition seems to have anvthing with the ‘construction’ of the
property of being loved by evervone.
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Om the other hand, Gz, G and the occurrence of x in Gz are all to be con-
strued as comstituents of & because, whatever value they take, that value
would seem to be a constituent of the property denoted by o. Accordingly.
for any assignment of values to variables, the entities picked by G'r and =
will e-ground the property picked by o, the latter in virtue of = being a
constituent of o through its free occurrence in G !

Below 1s the general definition of constituency that suitably accommo-
dates all the examples of relational e-grounding that we have been discussing
so far:

¢ An occurrence of a term 7 in a term o 15 a constituent occurrence of 7 in
a if 7 18 a sub-expression of & and every free occurrence of a variable in 7
occurs freely in o. The term 7 is a constituent of o, written 7€ c(a), if 7
has a constituent occurrence in . Cons

Notice that this definition encompasses the sense constituency for sen-
tences as well That is, a sentence of the form R(a,,...,a,) has as con-
stituents R and all a;'s. simply because they're all sub-expressions of
R(a, ...,a,) and every free occurrence of a variable in each of them occurs
freely in R{a,,...,a,).

It can be shown that each of Sus, CLOSED SUB and CoONS can motivates
the idea of type-stratification for relational types. This means that as soon as
we settle on a notion of syntactic constituency for A-terms from among these
three major candidates, we can motivate our desired type stratification. Of
course, for the reasons given earlier, our favorite account of constituency
will be Cons and we will use examples along those lines. First, we add to
the terms language of STT entity grounding statements between any pair of
types t; and t3, to obtain STT™. The relevant clause is as follows:

¢ If 7 and & are terms then 7 « & is a term of type ().

Notice that here we are treating statements of e-grounding syncategore-
matically. Alternatively, we could treat them categorematically and take
statements of e-grounding to be obtained by, e.g.. typed constants (stand-
ing for relations of e-grounding) that apply to entities of appropriate types.
More specifically, for any pair of types t; and t; we could associate a con-
stant -, of type (t,,t;) and construe statements of e-grounding a <, b

?1This ia plausible, especially because due to the principle of ‘a-conversion’, according
to which terms with corresponding bound variables of different names are the same, o
is can be identified with Ay .((¥2!Fz) A Gz). In thiz c-equivalent variant of o, z, but
not z. still plausibly is a constituent of the term. Such a-equivalent representations of
terms may well allow for redefining constituency in terms of variables, instead of variable
OCCUITENCES.
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are in fact abbreviations for applications of the form <, (a,b), similar to
what we did for the logical vocabulary.

Our syncategorematic treatment of e-grounding statements 1s mainly be-
cause our pre-theoretic talk of e-grounding (as introduced in §2) doesn't dis-
criminate against entities of different types; it appeals to a unified notion
that runs across reality. It's the same locution all over as if we are talking
about the same relation that holds between entities of different types. So a
syncategorematic treatment of e-grounding statements seems closer to our
pre-theoretic conception and use of the notion.*®

In any case, we can now express our desired principles of e-grounding in
the extended langnage, to obtain +5TT ", which is just +5TT plus the following
axiom schemata:

o (TwoAowy)>TxY HEkE
o —(T=T) IR
o THT >0 KT L
o Two, if Tec(o) S
o T« Vrip AT « Irtp, where 7 is of type t and x € FV (o) Q

?20ne might object to the syncategorematic formulation of e-grounding statements
by saying that there is no such relation out there in the reality, after all, that, e.g.,
would contribute to the truth of statements of e-grounding; at beat, there are infinitely
many such relations that do the job {and that has to be cashed out on the alternative,
categorematic approach). In response to this, although one should admit the structure
of the type theories in this paper. and in general in the philosophical literature, don't
allow for a unigue relation that ignores type differences, that’s hardly a unique problem
for e-prounding, or any other notion of grounding, for that matter. The same issune
can be raised regarding categorematic va. syncategorematic treatments of the logical
vocabulary or identity. This has to do with the design of the kind of type syetems that
most philosophers use, such as simple and ramified type systems, where no cross-type
term can be expressed. There are, however, more recent type theories, though so far
mostly in the service of mathematicians and computer scientists, that allow for such
entities. For instance, A2 or Sysfem F' is among such type systems, otherwise known as
Dependent Type Theories. These type systems raise above the type restrictions built into
the kind of type theoriea entertained here, and in general by philosophers, and allow for
terms and their denotations that aren’t sensitive to the choice of simple tvpes. We believe
that the notion of e-grounding, as well as various other notions of prounding that call
for ramification, and, in fact, many other relations outside the context of metaphysical
priority (e.g.. identity and existence), are best captured by such general systems. For a
recent argument in favor of System F as the right framework to capture the talk of identity,
existence, quantification and various other typed relations, see Anonymous (MS|a]). For a
general introduction to dependent type theories see Nederpelt and Geuvers (2014). More
detailed discussions of Syastem F and their applications can be found at Girard et al.
(1080) and Mitchell (1996, Chapter 9).
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We can now see exactly why we need relational ramification. Consider,
for example, the property P of being Mike such that Mike has some property,
expressed by Az®.(z = m A 3Y®Y (m)). We argued at the beginning of this
section that the structure of this property calls for an infinitary hierarchy of
individual properties. Using Cons and the principles of e-grounding above,
this can be shown more rigorously. Notice that according to our definition
of relational constituency, F has the proposition 3¥ €)Y (m) that Mike has
some property as a constituent, so by S5 they are e-grounded by it. On
the other hand by () the proposition itself 18 e-grounded by all properties of
individuals. A contradiction follows from applying Ul and TR. Put formally,
we have the following:®?

Theorem 2. @ 5T1" |

Proof.
(1) Az®.(z=m A3Y &Y (m)) < VY (m) Q
(2) Y EY (m) « Aze.(z =m A Y& Y (m)) S

(3) Aze.(z=m AIYEY (m)) < Az®.(z = m A IVIDY (m)) TH:1,2
(4) —[Az=(z=m ATYEY (m)) <« Az*.(z=m A IY®Y (m))] IR
(5) L PC3 4 O

This Theorem essentially formalizes the inconsistency result outlined at
the beginning of the present section. The rest of the story is similar to the
previous section. We have assumed that the language of simple type theory
can capture our stipulative talk of e-grounding. We have then run into
contradictions when formulating our desired principles in this language. In
line with our arguments at the beginning of the section, the most e-ground-
friendly resolution to the problem at stake i1s to segregate the property picked
by Aze.3Y (€Y (m) and the ones it quantifies over, so we implement similar
revisions in our syntax.

More specifically, we replace the type (&) with two types (e}l and (e)2,
the first one assigned to predicates that pick the ‘building-block” individual
properties, and the second one for the predicates that pick the ‘buildings’.
As a result, we will be able to revise our term-formation rules in a way that,
e.g., Aze. Y (EMY (m) will be of type ()2, and so on. As expected, the proof
system needs to also be calibrated, accordingly.

As expected, this process improving upon languages and runming into
inconsistencies leads to positing an infinite array of newer and newer leveled
types {e)fL, (e)}f2, (e)3, ... for predicates that pick different kinds of individual
properties, and {}1, ()2, ()3, ... for sentences that express different kinds of

?30ne who goes only as far as committing to the restrictive CLOSED SUEB could use the
term P := Az®.3Y =¥ (m) and run similar arguments.
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propositions. In general, we can run similar arguments for different expres-
sions of different relational types of the form (¢;, ..., 1), for any n > 0, and end
up with an infinite hierarchy of types {t1, ..., to )1, {1, ... ta )2, {t1, .., 20 )3, -
that behave in the way expected. In the next section, we propose a formal
language and logic that fully accommodates the syntactic changes glossed

here.

5 Ramified Type Theory

We now introduce a system ramified types based on the previous discussions,
in 1ts most general form. First, let's introduce ramified types and their levels:

Definition 4 (Ramified Types and Levels). The set T" of ramified types
t and their levels 1(¢) are simultaneously defined as follows: e € 7™ with
I{e) =0, and for &;,....,4, € T  and m 2 1, if 1(%;) < m for each i = 0,...,n,
then {tg,...,taYm e T, with I({t1,...,t.}m) = m.

In effect, e 15 the type of individuals, and for any types ;. ...,t,, Where
n =0, (t,...,t,}fm is the type of n-ary propositional functions of level m—
functions that, as the term-formation rules below show, take arguments of
types t1.....t,, respectively, and return an level-m proposition. The type of
level-m propositions 1s obtained as the limiting case of the relational types,
when n = 0, and is represented by ()fm.

As before, for any ramified type t€7" we assume there's a demumerably
infinite set of variables Var® of type ¢t and a (possibly empty) set of typed
constants CST*. We reserve CST" for the set of all constants) of type t. We
define the sets of all variables and constants respectively as Var == UrrVar®
and CST := |J,7~CST:. We also represent the set of t-type terms with
TERM'.

As before, we choose the constant-based approach to introduce our logical
vocabulary. In line with our discussions of levels from before, we choose our
typed, logical constants in RTT, as follows: -, is of type ({}fm}fm; =, ma-
“*mymay VYmymg 800 Amgmy, each of type {{}ﬁnlr{mﬂymﬁ{mlsmi}; and,
to repeat, for any ramified type t, ¥, is of type {{t)fm)}/max{1(¢)+1,m}. As
for the identity operator in RTT, for any ¢ we reserve a constant =% of type
(t,t)fmax{1,1(¢)}. Notice that since identity statements are essentially for-
mulae, the minimum level they can take should be 1. Notice also that the
type of the universal quantifier constant ¥t is determined through the con-
vention Vr'e¢ = ¥ (Azr'.¢n) and level conventions of A-terms (as introduced

Definition 5 (Ramified Terms). The terms of RT'T are recursively defined
as follows: (i) If z* € Var’, then z* is a term of type t; (ii) if c € CST",
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then c is a term of type t; (iii) if =, € Var™,...,z, € Var'™ are pairwise
distinet, where n 2 1 and 1(#;) < m for each t;, and ¢ is a term of type (}m,
then Az}, ...zir.¢ is a term of type (t1, ..., ta)fm; (iv) if 7 is a term of type
{t1,...,t,)fm, where n > 1, and for each i = 1,...,n, 7; is a term of type t,,
then 7(m,...,7) is a term of type (}m.

The notions of free and bound variables of terms, substitutions of terms
for variables and being free for a variable are defined as usual. We denote
the set of free variables in a term o by FV(g), and the set of all terms of
ramified type theory by TERM,.?* We also adopt similar conventions about

meta-variables for variables, terms and types as before.
We now introduce the proof system for our ramified language, which we
named System R.

Proor SysTEM R:
Arioms:

1. Leveled appropriate axioms of propositional logic PC,

2. (Azh, .. 2" ) (F:) < [FifE]dm, where the type of o is t; Be,

3. W F+Fo, where F' and o are, respectively, of types {tyym and t Ul,
4. Fo - 3t F, where F' and o are, respectively, of types (t}fm and t EG,
5. W, (Azt ¢pp»Fz) - (¢ — VLF), where F is of type (t)n,

n*=max{m,n} and = ¢ FV (o) UD,
6. W, (Azt.Fz—s1,) - (IF - ), where F is of type (t)n,

n*=max{m,n} and z ¢ FV (¢m) ED,
7. o=to, where ¢ 15 of type ¢ Ref,
8. g=tt = (Fo—=F'1), where F is of type (t}im LBZ,

Rules of Inference:

9. If + ¢, and + ¢,,—1,,, then ~ 11, MP.
10. If + Fz*, then ¥, F, where F is of type (t)im UG,

Notice that our ramified types and terms, as introduced here are very similar to
Harold Hodes’s System ="", as introduced in Hodes (2013). What we consider as level
here i= called “order’ by Hodes, and that in our svetem, but not Hodes’s vacuous lambda
abstraction is posaible.
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Notice that each of the axioms and rules of inference above are multiply
schematic. For example in PC,, the axioms hold for any sentence of any
level, and the relevant instances of — and - may differ in type and should
be typed carefully. In particular, notice that in UL., LBZ, and UG, are all
schematic in multiple ways: in the occurrence of the terms, types t and the
level m of the relational types (t)fm.

Finally, we express the principles of e-grounding in RTT. To do this, we
first extend RTT to RI'T* by adding the following clause:

e If 7 and o are terms, then T <« ¢ if a term of type ().

The e-grounding system looks like what we introduced at the beginning
of this section, but now with the types being schematic for different types
(individuals, propositional and relational) and levels (1, 2, 3, ...). We call
the augmentation of R with the following axiom schemata, resulting in R*
or what we also call System G-

l.(trewon cwy) =Ty TR,
2. ~(t=T) IR,
3. TROT >0 wT AS,
1. 7= o, if Tec(o) S
5. 7« Vr'¢ A T « Izrt¢, where 7 1s of type t and z e FV () Qs

We conclude the paper with some final remarks. First, notice that in
Definition 5 we assumed that the level of the arguments 7, ..., of a rela-
tional type {7g,...T )fm are no higher than the level of type, i.e., m. We can
see now why we had to make this choice. Suppose, on the contrary, that
{{}3)2 15 a legit type and entities of this type could apply to entities of type
()3 in order to produce ()/2-type propositions. Now, let F' = Apt¥® ¢, where
¢, 18 any sentence of type ()2, and let ¢ = ¥pl2p. Then F(¢) will be of type
(}2. But by S, we have ¢ « F(¢), and by Q, all level-2 propositions would
e-ground ¢. A contradiction then follows from IR and TR: by TR all level-2
propositions would e-ground F(¢), and that includes F'(¢) itself, which goes
against IR. Similar examples can be given if types like {{}3)/1 were allowed,
whereas types of the form {{)B)/n for any n > 3 are safe to inhabit.

The second remark concerns our constant-based, categorematic presen-
tation of the logical vocabulary in this section and the previous one. We
mentioned that there are advantages in this approach, both concerning pre-
sentation (more elegance and convenience in defining terms and specifying
axioms) and expressiveness for metaphysical theorizing. That said, however,
one might be skeptical if the constant-based approach is the best one when,
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in particular, 1t comes to ramified type svstems principles. For instance,
given the abundance of levels, the constant-based approach requires a very
big ontology, with infinitely many entities sitting out there to just do the job
of, say, negation. Similarly, we need considerably more axioms. compared
to the syncategorematic approach, each crafted for certain levels, in laying
out the proof system. These considerations might make the constant-based
approach in ramified type theory lose attraction to sparser ontologies with-
in certain big-picture considerations. This might also be why most of the
works in the literature on ramified type systems (including Russell's origi-
nal works) choose the syncategorematic approach to the logical vocabulary.
Moreover, from a purely e-ground-theoretic perspective, it may sound some-
what mysterious that some but not other constants raise levels of the things
they apply to.

Omne might think that these go against one of the primary motives of
adapting a categorematic approach towards ramified type theory, and won-
der if 1t’s possible to present our ramified system syncategorematically while
somehow retaiming the relevant formalizations regardless of e-grounding.
This seems possible. In fact, this is the approach we took in §3, though
mostly for convenience. Here we can also associate in our term-formation
rules (Definition 1) separate clanses for logical terms. But then we will
have to make sure that the notion of constituency (Cons) is also extended
with enough clauses concerning logical statements and their constituents. It
should be noted, however, that this approach will no longer allow for the
attractive thought that logical entities can enter into e-grounding relations.
For instance, there 18 no longer a relation of conjunction that can be said
to e-ground a conjunctive proposition. In any case, we leave 1t open which
choice 18 more appropriate here, all things considered.

Finally, in this paper we argued that simple relatiorzal entities each have
to come in certain infinitary hierarchies of levels, for the principles of e-
grounding to go through without facing immediate inconsistencies. One
might wonder if individuals should also be fragmented into levels, similarly
to relations. Even though this 1s formally possible (for instance, Bacon et al.
2016, do this), such a move seems unmotivated by the metaphysical views
that we have been appealing to, for if a propositional function contains a
proposition that quantifies over individuals, then whatever it refers to 18 not
an individual: it's a proposition, property or relation. That 1s to say, the type
of propositional functions are already different from the type e of individuals,
whether or not they quantify over individuals in their structure. That said,
however, some might have independent reasons to stratify individuals into
levels, as well, e.g., by considering certain mereological relations that hold
between them as instances of e-grounding. We also leave that possibility
open for future investigations.
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6 Conclusion

I argued that considerations of e-grounding, as presented in this paper, nat-
urally call for fragmentation of relational entities into certain infinitary hier-
archies of levels, in a way that 1s best captured by ramified type systems. I
proposed a natural ramified type system that nicely captures the principles
of e-grounding.

Several problems remain open, which we hope to attend to in the future.
We haven't yet verified the consistency of the systems R and G. In partic-
ular, while the consistency of the former is proved in (Anonymous MS[c]),
the consistency of the latter still awaits proof. Another issue concerns the
choice between categorematic vs. syncategorematic representations of logi-
cal statements as well as e-grounding statements. Even though throughout
the paper, and for a combination of reasons, we made a certain choice in this
regard, namely, a categorematic treatment of logical, and a syncategoremat-
ic treatment of e-grounding statements, we also mentioned that alternative
options are available, without any serious impact on our arguments for the
ramification of relational types, though, each choice has its own pros and
cons. We, however, leave it open which choice of options 1s more appropriate
under large-scale considerations.

A somewhat larger open problem concerns the general choice between
ramified versus simple type theories as the ‘correct’ framework in pursu-
ing philosophical, and in particular, metaphysical inquiry. We mentioned
that the ramified approach is naturally motivated by considerations of e-
grounding, and also settles a cluster of contemporary puzzles and paradoxes
of ground and grain in a unified way. Some other puzzles in philosophy
and logic have also been proposed ramified solutions (see, e.g., Kaplan 1995;
Kripke 2011; Prior 1961; Russell 1908; Whitehead and Russell 1910). This
speaks to the immense and unified explanatory power of the ramified ap-
proach in doing philosophy, and in particular, metaphysics. But simple type
theory has been proved more frmitful in certain other areas, such as in math-
ematics, where, r.g.. those systems can be enriched with certain axioms to
serve as a foundation for classical mathematics (see, e.g., Church 1940, as
an early work along these lines). Also, some major projects, especially in
the recent literature on the metaphysics of modality, have been carried out
in simple type systems and supposedly seriously rely on their full expressive
power (e.g., Bacon 2018; Willlamson 2013).

Finally, we noted that, unless we construe quantificational statements as
‘long’ conjunctions or disjunctions, and accordingly the principle () as an
mnstance of 8, one doesn’t need to embrace structured propositions in order
to be receptive to the idea that propositions, along with properties and
relations, have to come in infimtary levels, as described by ramified type
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theory. All that's needed 1s that other, non-propositional types of relational
entities are structured in certain plausible ways and that principles of e-
grounding are true. But, and perhaps more importantly, we noted that even
if propositions are structured, the principles of e-grounding don't require
them to be too structured to be susceptible to paradoxes of grain such as
the Russell-Myhill theorem. This makes it possible to have coarse-grained
views about propositions, and yet admit that they have to come in a ramified
hierarchy. It also puts those who reject structured propositions based on
paradcxes of grain in an awkward position, as they now have independent
motives to endorse a ramified space of propositions, which if they do, they
can secure highly structured propositions, as well.

Only future work on both ramified and simple type systems and their
large-scale metaphysical implications will determine which one, if any, is to
be preferred as the correct framework for pursuing metaphysical inquiry.
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