Does Sider’s Logical Fundamentalism
Endanger Immediate Ground?

Abstract

Wilhelm (2020) has recently shown that certain propositional identities go against
widely entertained principles of immediate grounding. This paper discusses one source
of motivation for the identities in question, having to do with certain ideas of logical
fundamentality due to Sider (2011). It is argued, in particular, that the latter can
be rephrased in higher-order logic, in a more appropriate way, in such a way that the
troubling propositional identities are avoided.

1 Introduction

Wilhelm (2020) has recently shown that certain propositional identities which he calls ‘stan-
dard’ lead to inconsistencies with widely accepted principles of immediate grounding. Here
are the propositional identities in question:

o pAY= (V) I
o ¢pViP==(-dAp) I

And here are the principles of ground in question (where < stands for the relation of
grounding):!

. <(6<9) R
o D<ather = NG
e $<(WAY) e d=UVh=7 CcG
e $<(Vvy) e d=vvo=n DG

!These are the ‘non-factive® version of the principle of ground found in Wilhelm (2020); define ¢ to factively
grounds ¥ (write: ¢ < i) if ¢ < 2 and ¢ and ¥ are both true. Essentially the same inconsistency results arise
here, but we find the non-factive presentation more fundamental and easier to represent. See Fine (2012a,
pp. 48-50) and Correia (2017) for some discussions of the factive/non-factive distinction and issues regarding
their interdefinability and fundamentality.



o p<(PAY) e Pp=-pve=—y NCG
¢« d<(YPVvy)erd=-Ypve=y NDG

To see an example, note that by CG we have ¢ < ¢ A, and so by I; we have ¢ < —(-g v -1).
Then from CG and NDG, it then follows that ¢ = ——¢@, which goes against [R in presence of
NG.

As Wilhelm (2020) mentions, the grounding principles above are widely endorsed across
the literature (see, e.g., Correia 2017; Fine 2012b; Kramer 2018). But no reason is offered as
to why the propositional identities I; and I; are ‘standard’ or should even be endorsed.

This paper discusses one potentially serious motivation for I; and I; due to Sider (2011),
which we call logical fundamentalism—the 1dea that some logical operators are more funda-
mental than others, or in Sider’s special way of putting it, ‘carve reality in its joints'. It will
be argued that the inconsistency results due to Wilhelm (2020) can be derived under a cer-
tain way of cashing out Sider’s idea, applied to conjunction and disjunction. It is then shown
that Sider's views can be rephrased, more appropriately, within the expressive language of
higher-order logic, in such a way that is consistent with the principles of ground outlined
above.

I first mmtroduce higher-order logic in a semi-formal way to provide the required tech-
nical background. After that I introduce Sider's logical fundamentalism and higher-order
formulations of it which avoid the inconsistencies due to Wilhelm. A rigorous presentation
of higher-order logic is presented in the technical appendix.

2 Higher-Order Logic

First, some background on higher-order logic (see the technical appendix for a detailed intro-
duction of higher-order logic). We assume there are entities such as individuals, properties
of individuals, propositions and polyadic relations that hold for or between these things
and more complex entities. We distinguish these entities at the level of syntax by assigning
types to the relevant terms that stand for them: type e for individuals, {} for propositions and
(t1, ..., tn) for n-ary relations (n = 1) that hold between entities of types t1, ..., tn, respectively.

One way to form sentences in higher-order logic is through application: for any given
type t, if F' and a are, respectively, terms of type (¢} and ¢, then F(a) is a term of type {},
i.e., a formula. For example, if F' is a shorthand for the predicate ‘... is funny’, and a for
the name ‘Alex’, F'(a) translates to the sentence ‘Alex if funny’. Similarly, any relational
term of type (t,,...,%,} can simultaneously apply to entities of types t,, ..., t,, respectively,
to create sentences. Another way to form terms in higher-order logic is through abstraction,
which creates predicates out of sentences. For instance, from the sentence ‘Someone loves
John', formally represented by 3z2L(z,7) (with L being a constant of type (e, e) standing
for the relation of loving, and j of type € a name for John), we can create the predicate
‘... 18 loved by someone’ by abstracting from the name of John, using lambda abstraction:
Aye.3z¢L(z,y). The predicate is taken to stand for the property be being loved by someone.



We can similarly create predicates with regards to entities of any arbitrary type t. Thus
the property of being a proposition that has all properties of propositions can be said to be
denoted by the predicate Apl!. VXN X (p), which itself has type {{}}.

As for the proof system, in higher-order logic, besides very natural generalizations of the
rules of first-order logic (such as Universal Instantiation or Existential Generalization—see
the appendix) we have two competing principles that govern A-terms, the second being a
weakening of the first (where [o,/x,,..., 0, /7, ]y stands for the simultaneous substitution of
the terms o; for the variables zy, for each i =1, ...,n):

o (Azt, .z (o1, ....00) = [o1[x1, ..., O )z, ]ib, where the type of oy is t; for each n > 1.

B
. I:J\::Fli,...,fcfl“.tﬁr){{rl,...,crﬂ} ++ [o1fz1, ..., 00 fzn ]y, where the type of oy is ¢; for each
n>l. BE

To illustrate, according to A_, the proposition that Napoleon was a French emperor 18 identical
with the proposition that Napoleon was French and Napoleon was an emperor. Some people
have argned against the plausibility of this principle in various contexts (see, e.g., Dorr
2016); in what follows we will offer one such reason in the context of grounding; put formally,
(Az=. F(z)aE(z))(N) = F(N)AE(N). On the other hand, g is an extremely plansible,
minimal principle that gives us equivalences such as this: Napoleon was a French emperor if
and only if Napoleon was French and Napoleon was an emperor: (Azs F(z)AE(z))(N) <
F(N)AE(N), with the relevant conventions regarding the constants used in place.

What about logical expressions in our language? When we look at the fine print of many
logic books, in particular, introductory ones on propositional and first-order logic, we learn
about how logical statements are ‘made out of certain symbols (A, v,—.V, etc.) applying to
propositional variables and constants, but with no meaning associated to those symbols. We
can take a similar approach in higher-order logic. According to the syncategorematic approach
to the logical vocabulary, they are only linguistic devices that contribute to forming other
expressions which denote things in reality; the symbols themselves don't pick up anything out
there. Thus, for instance, -+ doesn’t denote anything; it merely contributes to the formation
of other terms that do, through clauses such as this: whenever ¢ and v are terms of type ()},
then so0 18 ¢ — .

In higher-order logic, however, an alternative treatment of the logical vocabulary is
avallable—the categorematic approach—according to which each of the logical symbaols de-
notes a proper relation out there in reality that relates the propositions denoted by the
formmulas it relates to each other. Thus one can take implication - be a constant of type
((),{)), and define of ¢ - 9 as an application instance of the form — (¢,v); the good old
cases of quantification, of the form V', are then construed as instances of application, of
the form Vt(Azt.¢).

From a formal perspective, the two attitudes seem on par, but the categorematic ap-
proach, which happens to be the dominant approach in the presentation of higher-order logic
(see, e.g., Bacon 2018; Church 1940; Dorr 2016; Henkin 1950; Mitchell 1996), seems to be



metaphysically more flexable, as it allows for intelligibly theorizing about the nature and the
granularity of the logical vocabulary in a way that the alternative approach doesn't. For
example, we can intelligibly ask how to define the connective conjunction A and whether or
not it, say, it should be taken as a primitive, identified with, e.g., Aptgt—(-pv —g) or another
truth-functionally equivalent relation.

In particular, the categorematic approach allows for either treating all logical vocabu-
lary as primitive constants, or interdefining some of them in terms of some others that are
primitively given. In the former case we will have the following typed logical constants:
A (conjunction), v (disjunction), — (implication) and <« (biconditional ), all have of type
{((),{(})); - (negation) has type {{}}; and for any type ¢, there is a constant for a (higher-
order) universal quantifier ¥*, of type ({t}}, existential quantifier 3, of type ({t)) and identity
=t of type (t,#). In the case of indefinability, among various possible ways, we can define
some of the logical vocabulary in terms of some primitively given ones; e.g., 1 = ¥} (v{}),
- = ,:'tp'{}'(p — J_), A= ,lpﬂ'q'{}.—.(p — —.q) and v := Jﬁ.p{}qﬂ' .—|(—|j.'.'l h—lqj.

The next section introduces Sider’s ideas of logical fundamentality and shows that the
categorematic treatment of logical vocabulary offers a promising way to reformulate Sider’s
ideas more appropriately and in such a way that the inconsistency results found in Wilhelm
(2020) can be avoided.

3 Logical Fundamentalism

According to what I call logical fundamentalism, explored in Sider (2011, Section 10), some
logical operators are more fundamental than others, meaning that the latter can be inter-
defined in terms of, or derived from, the former. Sider's main motivation for logical funda-
mentalism is that logical connectives and quantifiers are indispensable in our fundamental
scientific theories, and indispensable ideclogy 1s the ‘best guide’ to joint-carving (see, e.g.,
Sider 2011, pp. 158 and 216). He particularly pairs conjunction and disjunction, as well as
the universal and exastential quantifiers, in his discussions of logical fundamentality, the idea
being that in the case of each pair, presumably only one of them carves reality in i1ts joints
(see footnote 2 for a proviso, though). He goes on to say that his approach to fundamentality
forces him to make a ‘hard choice’:

Next question: which logical concepts carve at the joints? I sald a moment ago
that the sentential connectives of propositional logic carve at the joints. But
which ones? Just A and ~ [i.e., —|7 Just v and ~7 Or perhaps the only joint-
carving connective i1s the Sheffer stroke 17 Similarly, which quantifier carves at
the joints, ¥ or 37 (#bid, p. 217)

Here I'm not going to cast any doubt on the general idea that some logical operators are
more fundamental than some others, however fundamentality is understood. What I will do,
however, 1s to show that even if one is ‘forced’ to admit this, one might still have good reasons
to question Sider’s particular way of cashing out the idea, where he pairs A, - with v, - and



asks which one 18 more fundamental; this can potentially lead to the identities involved in
the inconsistency result due to Wilhelm ({2020).2

To see this, note that Sider (2011) only works with first-order langnages. Now, assum-
ing, e.g., that A,— are more fundamental than v,—, how can we express this in first-order
languages? This seems naturally cashed out through the propositional identity ¢ v ¢ =
—(—¢A—1). (Similarly, in the present setup, the fundamentality of, e.g., ¥ over 3 is naturally
cashed out 1n terms of either of the propositional identities Irg = -Vr—-¢ or Yrd = -Ir-g.)
=0, within the boundaries of the language that Sider works with, one could motivate either
of the identities I; and Ia, and more.

One may alternatively propose to understand Sider's comparison of the fundamentality
of v, and A, - in terms of the sets {v, -} and {a,-}. But even if some sets can be said to
be more fundamental than some others (e.g., perhaps, the union of some pairwise distinct
sets 15 less fundamental than the unioned sets), these two particular sets don't seem to
stand in such a dynamic. In any case, nothing in Sider's arguments for the fundamentality
of the logical operators hinges on sets: they are argued to be fundamental because of their
indispensability in fundamental philosophical and scientific theories. But it’s hard to see how
this hinges on sets of connectives and quantifiers as being indispensable; we can and often
do formulate our principles of logic, used in our philosophical and scientific investigations,
using the connectives and quantifiers themselves, not sets that contain them.?

A third option is to rephrase the matters of logical fundamentality using higher-order
resources. 1This way, we can target the logical operators themselves, and intelligibly talk
about their fundamentality in a way that is closest in spirit to Sider’s informal discussions.
This avoids the awkward presence of sets in the question of fundamentality of the logical
operators; it also rises above the unwarranted expressive power of first-order logic due to
which one has to harbor questions of logical fundamentality of certain relations through the
propositions they syncategorematically contribute to form.4

?Note that depending on whether or not one maintains a ‘non-redundancy’ constraint about fundamen-
talitv or joint-carving, one may end up ruling out one of the pairs a, -, and v, -, over the other or be an
egalitarian about this and accept both as being equally fundamental; see Sider (2011, pp. 218-220) for more
on this. That saild, in what follows the choice between these two alternatives won't make a difference in our
arguments: no matter which of the identities is believed to hold. the relevant inconsistencies can be avoided.

*Also, and in any case, even if one decides to stick to sets, it is worth noting that in the neighboring
literature on fimdamentality, such as particular ‘ontological dependence’ and ‘entity grounding’, it is very
commeon to consider seta as ‘less fundamental than', ‘dependent on’ or are ‘entity-grounded in’ their members
(Correia 2008; Fine 1995; Schaffer 2000). So shifting the guestion of the fundamentality of v,- and A, - to
that of {v,-} and {A, -} doesn't really seem satisfiable, anyway.

40ur higher-order reconstruction of Sider's ideas might be taken to face a challenge from the outset:
Sider (2011, Section 9.15) is overall dubious of the fundamentality of higher-order quantification (as opposed
to the first-order case), and in particular casts doubt on arguments from natural languages in favor of the
innocence or the irreducibility of higher-order quantification to first-order resources (as found in, e.g., Boolcs
1084; Rayo and Yablo 2001). But he does offer a criterion that, if satisfied, could be taken in favor of
their fundamentality: serving an ‘important theoretical purpose’; he doubts, however, if any of the major
motivations for higher-order reasoning can satisfy that criterion (see, e.g., p. 213). However, since the
date Sider’s book has been out, many novel and serious theories and discussions of modality, granularity
and grounding have been developed. each putting forward certain systematic views on fundamental notions



Here's how we can replace either of the propositional identities I; and I, with its corre-
sponding relational identity in our higher-order setting:®

o A=Aptlgl.~(—pv—q)
o v=2Apllgl .~ (<pa-q)

Now, using suitably structured models (see, e.g., Benzmuller et al. 2004, for various such
models in higher-order logic), it can be shown that in the presence of the principle fg (in place
of A. ), one can safely endorse any of these relational identities without having to identify the
corresponding dual propositions as following from the logic.

Note that each of these operators can be defined in various other ways, and still there will
be no way to guarantee the troubling propositional identities; there are models in which they
fail while all the grounding principles, as well as the relevant relational 1dentities, hold. For
example, one might take take — as more fundamental than A and define A = Apllgt) —(p = —g),
and keep the identity v = Ap'tql).—(=p A —g) or just leave v as a primitive. In neither of these
cases there's a way to ensure that ¢ Ay is —(-¢ v =) or @ v b 18 =(-d A —10), even though
each of these pairs are equivalent due to fg.

We conclude the section with an important remark: note that our arguments above heavily
rely on the use of a particular weakening of 8., namely Gg. One might ask, however, if there
are any independent reasons to reject 5 in favor of Sg than just to avoid the troubling
propositional identities I; and I;. There are. Fine (2012a) and Rosen (2010) introduce a
plausible principle regarding the grounds of A-terms, according to which, the fact that [¢/z]¢
grounds the fact that (Az.¢)(c). For example, the fact (Az.U(z) A M(z))(k) that Kim is an
unmarried man (i.e., a bachelor) is grounded in the fact U(k) A M (k) that Kim is unmarried
and a man.

In our higher-order langnage, this can be more generally expressed using the following
schematic formula:

o [o1fz, . onfza]ib < (AR, . 2br ) (o, ..., 0,) AG

Now, 1t 18 quite easy to see that AG pgoes against A, and IR. For if
[o1/x1, s onf Tt = (Axd, ... 2l 40) (o1, ..., o), then AG leads to the instance of self-grounding
[o1/z1, s OnfEn i < [o1f 21, ..., Onfza ]

in metaphysice and logic. In general, recemt metaphveics has witnessed a surge in the use of higher-order
resources in the study of (often a mix of) various traditional views regarding propositional granularity (Bacon
and Dorr (Forthcoming); Dorr 2016; Goodman 2017; Hodes 2015), ground (Fritz 2019; Fritz 2020; Fritz 2021;
Goodman (Forthcoming)) and modality (Bacon 2018; Williamson 2013). Most of these works (legitimately)
claim to serve ‘important theoretical purposes’ in our philosophical and logical theories based on the same
type of criteria that seem to underlie most other fundamental sciences such as mathematica and physics;
see Williamson (2007) and Williamson (2016) for more on such criteria. In any case, in what follows I just
assume that higher-order logical vocabulary are equally, if not more, eligible candidates for questions of
fundamentality than their first-order counterparta.

SSimilarly, other putative propositional identities of the form Iz*e = -¥ri-g or ¥rié = -Ir*-¢ with
relational identities of the form 3* = AX ) vt - X (z) and ¥* = AX™ 32 X (x).



So, the logical framework that saves the propositional logic of impure ground (the system
PHE in the appendix) is in fact motivated by independent neighboring principles of ground
and 18 thus very welcomed in the relevant context. Hence, Sider's ideas of logical funda-
mentalism are more appropriately captured using a higher-order logical system that is itself
independently motivated by other principles of ground, in such a way that the inconsistencies
due to Wilhelm are avoided.

4 Conclusion

I argued that even if, as Sider (2011) claims, there are be some fundamentality patterns lurk-
ing through the space of logical operators, Sider’s particular brand of logical fundamentality
(or what he seems to advocate, anyway), which can be taken motivate the propositional
identities ¢ A= —(-¢ v —l') and ¢ v 1 = —(-¢ A 1), can be avoided: we can implement the
relevant ideas of fundamentality more closely and appropriately in a certain well-motivated
higher-order logic, using corresponding relational 1dentities without having to go against the
standard principles of ground.

It remains open as to what other systematic reasons on propositional identities exist to
underhie the identities above, and how the ground theorist can afford to respond to them.
Omne major candidate that motivates these 1dentities, and many more, 18 the recently emerged
coarse-grained account of propositions called Booleanism (Bacon 2018; Dorr 2016); another
15 its extension Classicism (Bacon and Dorr (Forthcoming)). According to these views,
propositional identities are similar to identities of Boolean algebras; clearly, the troubling
identities I; and I, follow from this. Even aside from those identities, these Booleamism and
CLassism clearly go against the principles of ground outlined earlier in various other ways.
For instance, since ¢ and ¢ A ¢ are logically equivalent, they are the same; but given the
instance of CG according to which ¢ < ¢ A ¢, this goes against the irreflexivity principle, IR.
=imilarly, ¢ and ——¢ are identical under these views, and so the principle NG can’t fully hold
due to [R.

The motivations and applications of Booleanism and Classicism are quite strong, inde-
pendent from and beyond the scope of our principles of grounding, and larger considerations
motivating each of these opposing views often go against one another in various ways. We
leave investigating these matters for future work.

Appendix: Technical Background

Here we offer a rigorous presentation of higher-order logic that underlies the less-formal
discussions in the main body of the paper.

Definition 1 (Types). The set T of types 15 the smallest set such that: e € T and for any
types t1,...,tn, Where n 20, {t1,....t.) € T.



The type e is reserved for individuals, and (t,,...,t,} for n-ary relations; in case where
n =0, by convention we take (¢1,...,t,) to be the type of propositions, and represent it by ().

We assume that for any ¢t € T there’s a denumerably infinite set of variables VAR® of
type t and a set of typed non-logical constants CST*® which contains a constant < of type
({),()) which stands for the relation of strict partial immediate ground. For certain types
there are also logical constants to be introduced below. We reserve CST* for the set of
all constants, logical or non-logical, of type . We also define the sets of all variables and
constants respectively as VAR = User» VAR® and CST := U7~ CST.

Here's the list of our primitive, typed logical constants: A (conjunction), v (disjunction),
— (implication) and <« (biconditional ), all have of type {{}).(}}; — (negation) has type {{}};
and for any type t, there is a constant for a (higher-order) universal quantifier ¥, of type
((t)), existential quantifier 3*, of type ({t}} and identity =* of type (t,t}. After we introduce
the set of terms, we will see how logical statements, in particular, quantifiers behave in this
setup.

Definition 2 (Language £). The terms i £ are recursively defined as follows:
(i) if #t € VAR®, then at is a term of type #; (ii) if c € CST®, then c is a term of type #;
(ii1) if ¢ is a terms of type () and for n > 1, the variables x, ..., 7, are pairwise distinct,
and respectively of types t1,... ,t,, then Az%, ..., xir.¢ is a term of type (t1, ...,ta); (iv) if T
is a term of type (¢;,...,t,), where n > 1, and for each i < n, o; is a term of type t;, then
(61, ...,0n) 18 a term of type ().

We call a term of type () a formula, and when it contains no free variables, a sentence. We
use the letter ¢ with or without subscripts as metavariables for types, lower-case Greek letters
T, @, @0, ... with or without subscripts as metavariables for general terms, and lower-case or
capital English letters z,y, z,p,q9. X, Y, Z, P, (), with or without subscripts, as metavariables
for variables. The notions of free and bound variables of terms, substitutions of terms for
variables, and being free for a variable, are defined as usnal. We show the set of free variables
in a term & by FV(#). Also, the set of all terms of £ is denoted by TERM.

Now, we propose a proof theory for our language L.

SysTEM PHS
Azioms:
1. All theorems of propositional logic FL

2. P[(Azh, ..., W) o1,y 00)] = B[[o1f21, .. 00 [T, ]3], Where the type of o; is ¢; for
each n >0 B

®Note that PH is almost exactly the same as H in Bacon and Dorr (Fortheoming), with a minor strength-
ening: in H, UD, ED and GEN are limited only to cases where F 18 an A-term. thus resulting in the more
familiar case of ¥! (Azt.¢ - ¢) = (¢ = ¥'(Ax'.¢)). This detail won't make a difference in our discussions in
what follows, as either of the systems can be used to establish our point, but we find it worthwhile to have
the more general form on display here.



3. ®[Azl, ..., 75t 0(zy,..., 3, )] «» @[o], where the type of o; ist;, n20 n
4. V*F'+F(c), where F is of type (t), and the typeof o is t Ul
5. F(o)— 3*F, where F is of type {t), and the type of 7 is ¢ EG
6. Vi(Azt. ¢—=F(z)) - (¢ = V*F'), where z ¢ FV(g) UD
7. Vi{(Azt. F(x)—=y) = (F - ), where = ¢ FV (i) ED
8. o=0 REF
9. =1 = (F(e)=F(1)) LBz
Rules of Inference:
10. If - ¢ and +~ ¢ —» %), then 9 MP
11. If - F(z'), then + ¥i(F'), where F is of type (t} GEN

®[(Azs, ...,z ) (o1, ...,0,)] means that ® is a formula containing an occurrence of

Y S Y e B L
O([o1/x1, ..., o0z |t) stands for the same formula obtamed by replacing occurrences of
(Al ...,z ) (o, ...,00) with [ay/zy, ..., onfza ]t A similar convention applies in the case

of n. Notice that the following identities follow from PH:

. (:\Iii,...,If—?.'i!][’)(ﬂ']_,...,ﬂ'ﬂ) =0 [o1/x1, ..., 00 /zp]tb, where the type of g; is t; for each
nzl B

o At .. xho(x,...,2) =" 0, where the type of oy ist;, n>1 i

A well-known, weaker alternative to PH 1s can be obtained by weakening § and # to their

‘extensional’ variants, as follows, resulting in System PHE:7

. (:\Iii,...,If—?.'i!][’)(ﬂ']_,...,ﬂ'ﬂ) « [o1fz1, ..., 00 fxn ]y, where the type of o; i5 ¢; for each
nzl BE

. lmﬁi,...,mﬁ.a(ml,...,mﬂ) «+ 7, where the typeof oy is ., n21 nE

Note that if, as was discussed 1n Section 2, one decides to interdefine some of the logical
terms in terms of one another (in Sider's way or any other way ), one can shrink the resulting
proofs system, as some of the axaioms will be derivable in terms of some others. For instance,
if one defines 3* in terms of ¥* in the usual way, one can drop EG and ED from the proof
system, as they can be readily proved by other principles.

7 Again, PHF iz almost exactly the same as Hg in Bacon (2018) and Bacon and Dorr (Forthcoming), with
the same minor difference as in the case of PH and H that was mentioned in the previous footnote.



Finally, note that the main result of the paper can be expressed this way: once we adopt
the higher-order system PHE over PH, which arguably and due to independent reasons is
a better system in the context of grounding anyway (considering the principle AG), we can
capture Sider’s ideas of logical fundamentality in a more appropriate than their original,
first-order counterparts, and at the same time avold the troubling identities I; and I; that
Wilhelm (2020) shows go against the widely accepted principles of immediate grounding;
relevant model theories for systems like PH¥ can be found in Benzmiiller et al. (2004).

References

Bacon, A. (2018). The Broadest Necessity. Journal of Philosophical Logic, 47(5), T33-783.

Bacon, A., & Dorr, C. ((Forthcoming)). Classicism. In P. Fritz & N. K. Jones (Eds.), Higher-
order metaphysics. Oxford University Press. https:/ /philarchive.org /rec/BACC-8

Benzmuller, C., Brown, C. E., & Kohlhase, M. (2004). Higher-order Semantics and Exten-
sionality. The Journal of Symbolic Logic, 69(4), 1027-1088.

Boolos, G. (1984). To be is to be a value of a variable (or to be some values of some variables)
[Fublisher: Journal of Philosophy, Inc.]. The Journal of Philosophy, 81(8), 430-449.

Church, A. (1940). A Formulation of the Simple Theory of Types. The Journal of Symbolic
Logic, 5(2), 56-68.

Correia, F. (2008). Ontological Dependence. Fhilosophy Compass, 3(5), 1013-1032.

Correia, F. (2017). An Impure Logic of Representational Grounding. Journal ef Philosophical
Logic, 46(5), 507-538.

Dorr, C. (2016). To be F is to be G. Philosophical Perspectives, 30,

Fine, K. (1995). Ontological Dependence. Proceedings of the Aristotelian Society, 95, 269-
290.

Fine, K. (2012a). Guide to Ground. Metaphysical Grounding: Understanding the Structure
of Reality (pp. 37—80). Cambridge University Press.

Fine, K. (2012b). The Pure Logic of Ground. Hewview of Symbolic Logic, 5(1), 1-25.

Fritz, P. (2019). Structure by Proxy, with an Application to Grounding. Synthese, 1-19.

Fritz, P. (2020). On Higher-Order Logical Grounds. Analysis.

Fritz, P. (2021). Ground and Grain. Philosophy and Phenomenological Research.

Goodman, J. (2017). Reality is Not Structured. Analysis, 77(1), 43-53.

Goodman, J. ((Forthcoming)). Grounding Generalizations. Journal of Philosophical Logic.

Henkin, L. (1950). Completeness in the Theory of Types. The Journal of Symbolic Logic,
15(2), 81-91.

Hodes, H. T\ (2015). Why Ramify? Netre Dame Journal of Formal Logic, 56(2), 379-415.

Kramer, 5. (2018). Towards a Theory of Ground-Theoretic Content. Synthese, 195(2), T85-
814.

Mitchell, J. C. (1996). Foundations for Programmang Languages. MIT Press.

Rayo, A., & Yablo, S. (2001). Nominalism through de-nominalization. Neis, 35(1), 74-92.

Rosen, G. (2010). Metaphysical Dependence: Grounding and Reduction. Modality: Meta-
physics, Logic, and Epistemology (pp. 109-36). Oxford University Press.

10



Schaffer, J. (2009). On What Grounds What. In D. Manley, D. J. Chalmers, & R. Wasserman
(Eds.), Metametaphysics: New Essays on the Foundations of Ontology (pp. 347-383).
Oxford Umversity Press.

Sider, T'. (2011). Writing the book of the world. Oxford University Press.

Wilhelm, I. (2020). Grounding and propositional identity. Analysis.

Williamson, T. (2007). The philosophy of philosophy. Wiley-Blackwell.

Williamson, T. (2013). Modal Logic as Metaphysics. Oxford University Press.

Williamson, T. (2016). Abductive philosophy. The Fhilosophical Forum, 47(3), 263-280.

11



	Does Sider's Logical Fundamentalism Endanger Immediate Ground1024_1
	Does Sider's Logical Fundamentalism Endanger Immediate Ground1024_2
	Does Sider's Logical Fundamentalism Endanger Immediate Ground1024_3
	Does Sider's Logical Fundamentalism Endanger Immediate Ground1024_4
	Does Sider's Logical Fundamentalism Endanger Immediate Ground1024_5
	Does Sider's Logical Fundamentalism Endanger Immediate Ground1024_6
	Does Sider's Logical Fundamentalism Endanger Immediate Ground1024_7
	Does Sider's Logical Fundamentalism Endanger Immediate Ground1024_8
	Does Sider's Logical Fundamentalism Endanger Immediate Ground1024_9
	Does Sider's Logical Fundamentalism Endanger Immediate Ground1024_10
	Does Sider's Logical Fundamentalism Endanger Immediate Ground1024_11

