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Abstract
Diffuson tensor imaging (DTI) has demonstrated widespread alterations of brain white matter structure in children with 
prenatal alcohol exposure (PAE), yet it remains unclear how these alterations affect the structural brain network as a whole. 
The present study aimed to examine changes in the DTI-based structural connectome in children and adolescents with PAE 
compared to unexposed controls. Participants were 121 children and adolescents with PAE (51 females) and 119 typically-
developing controls (49 females) aged 5–18 years with DTI data collected at one of four research centers across Canada. 
Graph-theory based analysis was performed on the connectivity matrix constructed from whole-brain white matter fibers 
via deterministic tractography. The PAE group had significantly decreased whole-brain global efficiency, degree centrality, 
and participation coefficients, as well as increased shortest path length and betweenness centrality compared to unexposed 
controls. Individuals with PAE had decreased connectivity between the attention, somatomotor, and default mode networks 
compared to controls. This study demonstrates decreased structural white matter connectivity in children and adolescents 
with PAE at a whole-brain level, suggesting widespread alterations in how networks are connected with each other. This 
decreased connectivity may underlie cognitive and behavioural difficulties in children with PAE.

Keywords  Prenatal alcohol exposure · Diffusion tensor imaging · Graph theory · Structural connectome · Global 
efficiency · Inter-/intra-network

Introduction

Drinking alcohol during pregnancy is relatively common 
worldwide (~ 10% of pregnant women report consuming 
alcohol) (Lange et al. 2017a; Popova et al. 2017), and prena-
tal alcohol exposure (PAE) is associated with cognitive dif-
ficulties, impaired attention, motor deficits, and/or memory 
and language problems in children (Jacobson and Jacobson 
2002; Mukherjee et al. 2006; Rasmussen et al. 2008, 2013; 
Riley et al. 2011; Doney et al. 2014; Lange et al. 2017b). 
Over the past two decades, neuroimaging studies have shown 
that PAE can also result in a variety of alterations to brain 
structure, including smaller brain volumes, thinner cortex, 
and malformations of the corpus callosum (Riley et al. 2004, 
2011; Wozniak et al. 2006; Norman et al. 2009; Lebel et al. 
2011; Wozniak and Muetzel 2011; Moore et al. 2014; Don-
ald et al. 2015; Drew and Kane 2015; Zhou et al. 2017; 
Nguyen et al. 2017). Using diffusion tensor imaging (DTI), 
a number of studies have revealed widespread alterations 
to white matter microstructure, including lower fractional 
anisotropy (FA) and/or higher mean diffusivity (MD) in 
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callosal, limbic, projection, and association white mat-
ter tracts in children and adults with PAE (Ma et al. 2005; 
Wozniak et al. 2006; Lebel et al. 2008; Sowell et al. 2008; 
Li et al. 2009; Fryer et al. 2009; Santhanam et al. 2011; Treit 
et al. 2014, 2017; Fan et al. 2015; Paolozza et al. 2017). 
These widespread alterations suggest that large-scale brain 
networks may be affected by PAE, but it remains unclear 
whether topological features and connectivity among net-
works are altered in individuals with PAE.

Graph-theory analysis is a powerful tool to investigate 
the complex brain network at a global level (Bassett and 
Bullmore 2006; Bullmore and Sporns 2009; Park and Fris-
ton 2013). By constructing a whole brain connectome from 
the region-to-region white matter connectivity, graph theory 
analysis measures the mathematical features of the connec-
tome (Iturria-Medina et al. 2007, 2008; Gong et al. 2009). 
One of the important features of the human brain network 
is its small-worldness. Small-world networks show high 
efficiency and high local connectivity, enabling efficient 
communication over both short and long distances (Bassett 
and Bullmore 2006; Bullmore and Sporns 2009; Gong et al. 
2009). Graph-theory analysis using DTI has been applied 
broadly in the neuroimaging field to better understand brain 
development from infancy to adulthood (Chen et al. 2013; 
Huang et al. 2015), as well as to identify alterations in neu-
rodevelopmental disorders including attention deficit hyper-
activity disorder, autism and Turner syndrome (Cao et al. 
2013; Rudie et al. 2013; Fornito et al. 2015; Sidlauskaite 
et al. 2015; Zhao et al. 2018). Therefore, such complex net-
work analysis may provide more insight into the whole-brain 
structural alterations associated with PAE.

Two previous PAE studies investigated the brain’s func-
tional connectome using resting-state functional MRI 
(Wozniak et al. 2013, 2017). One study found children and 
adolescents with PAE (n = 24, aged 10–17 years) had signifi-
cantly increased shortest path length and decreased global 
efficiency than unexposed controls (Wozniak et al. 2013). 
The other study (n = 75, 7–17 years, non-overlapping with 
previous sample) found no significant differences in global 
graph theoretic measures, but did find higher variability of 
the gragh theoretic measures in the PAE group compared 
to controls (Wozniak et al. 2017). It is likely that structural 
network alterations underlie these functional connectome 
abnormalities, though the nature of the structural brain con-
nectome in children with PAE is still unclear. Only one pre-
vious study examined the brain’s structural connectome in 
neonates with PAE using DTI, showing similar whole-brain 
structural metrics to unexposed controls (Roos et al. 2018). 
The purpose of this study was to examine the structural con-
nectome in children and adolescents with PAE using DTI-
based network analysis. Based on previous findings of wide-
spread decreased white matter volume and FA (Lebel et al. 
2011; Wozniak and Muetzel 2011), we hypothesized that 

the structural network of children and adolescents with PAE 
would have lower network efficiency and degree centrality 
compared to unexposed controls.

Methods and materials

Participants

This study combines data from the following two research 
cohorts (Table 1):

1.	 The Kids Brain Health Network (KBHN, previ-
ously NeuroDevNet) FASD cohort (Reynolds et  al. 
2011), which collected data on 186 participants aged 
5–18 years (91 with PAE; 95 unexposed controls). Par-
ticipants received MRI scans at one of four research 
sites across Canada: University of Alberta (UofA), 
Edmonton, Alberta; Queen’s University (QU), King-
ston, Ontario; University of Manitoba (UofM), Win-
nipeg, Manitoba; and University of British Columbia 
(UBC), Vancouver, BC. This sample overlaps with that 
in a previously published DTI study of PAE (Paolozza 
et al. 2017). Participants with PAE were recruited from 
FASD diagnostic clinics within the participating cit-
ies. Controls were recruited from the same geographic 
regions by each site using advertisements in print and 
online.

2.	 The Canadian Institutes of Health Research (CIHR) 
FASD project (Lebel et  al. 2008), which recruited 
144 participants aged 5–32 years (70 with PAE and 
74 unexposed controls). Participants with PAE were 
recruited from the FASD diagnostic clinic at the Glen-
rose Rehabilitation Hospital and via school and social 
work services in Edmonton, Alberta, Canada. Partici-
pants received MRI scans at the University of Alberta, 
Edmonton, Canada. This sample overlaps with samples 
in previously published DTI studies of PAE (Lebel et al. 
2008, 2010; Treit et al. 2013, 2017; Green et al. 2013).

The inclusion criterion for PAE participants in both 
studies was confirmed PAE and/or a diagnosis of fetal 
alcohol spectrum disorder (FASD). Only the age ranges 
varied between studies: KBHN: 5 to 18 years, CIHR: 5 
to 32 years. Exclusion criteria for both studies for both 
controls and individuals with PAE were contraindica-
tions to MRI, neurological disorders, and head injury. 
We limited the current analysis to children and adoles-
cents (≤ 18 years). From the original sample of 330 par-
ticipants, a total of 90 participants were excluded due to: 
age (> 18 years: PAE = 10, Control = 10), no T1-weighted 
data (PAE = 2, Control = 2), or poor data quality (e.g., 
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poor whole-brain coverage, poor T1 or severe distortion 
of images by visual inspection; PAE = 29, Control = 37). 
Thus, the final sample analyzed DTI data from 121 chil-
dren and adolescents with PAE and 119 unexposed con-
trols, ranging from 5 to 18 years (Table 1).

Control participants had no self-reported neurological, 
psychiatric, and developmental disorders. Informed con-
sent was obtained from a parent or guardian, and assent 
was obtained from each child before scanning. This study 
was approved by the local health research ethics commit-
tee for each research facility. In the PAE group, partici-
pants from the KBHN cohort had been previously diag-
nosed according to the Canadian Guidelines for FASD 
diagnosis (Chudley et al. 2005) or had confirmed PAE 
from a credible source (Paolozza et al. 2017). In the CIHR 
cohort, PAE was confirmed by the local hospital FASD 
clinic or a community physician (Lebel et al. 2008). Of 
the 69 participants with PAE in the KBHN cohort, 27 
were diagnosed with alcohol-related neurodevelopmen-
tal disorder, 13 with partial fetal alcohol syndrome, and 
5 with fetal alcohol syndrome. These diagnoses all fall 
under the FASD umbrella. 24 participants in the KBHN 
cohort had confirmed PAE but no specific diagnosis under 
the FASD umbrella. Of the 52 participants with PAE in 
the CIHR cohort, 30 were diagnosed with alcohol-related 
neurodevelopmental disorder, 4 with partial fetal alco-
hol syndrome, 12 with fetal alcohol syndrome, and 6 had 
confirmed PAE but no specific diagnosis under the FASD 
umbrella.

MRI acquisition

For the KBHN cohort, MRI data were acquired at each site 
with closely matched protocols on a 1.5 T Siemens Sonata 
at UofA, 3 T Siemens Trio at QU and UofM, and 3 T Philips 
Intera at UBC. The parameters for T1-weighted struc-
tural images were axial MPRAGE, UofA: TR = 2180 ms, 
TE = 4.38 ms; QU/UofM: TR = 2180 ms, TE = 3.45 ms; 
UBC: TR = 1858  ms, TE = 3.6  ms, and common flip 
angle = 15°, 160 slices, voxel size = 1 × 1 × 1 mm3, matrix 
size = 256 × 192 (256 × 256 for UBC). Common param-
eters of DTI dataset across four sites were as follows: 
dual spin-echo echo planar sequence, 1 average, voxel 
size = 2.2 × 2.2 × 2.2  mm3, 50 axial slices with no gap, 
matrix size = 96 × 96; 30 gradient directions, b = 1000 s/
mm2, 1 (UBC, UofM, QU) or 5 (UofA) b0 images, 
TR = 7700 ms (UofA), 6828 ms (UBC) or 6600 ms (UofM, 
QU), TE = 94 ms (QU, UofM and UofA) or 69 ms (UBC), 
scan time = 3: 45 (UBC, QU, UofM) or 4:39 min (UofA) 
(Paolozza et al. 2017).

For the CIHR cohort, the MRI images were collected 
from the same 1.5 T Siemens Sonata scanner at UofA, 
but using a different protocol. T1-weighted structural 
images were collected using an MPRAGE sequence with 
TR = 1870 ms, TE = 4.38 ms, 144 slices, interpolated voxel 
size = 0.5 × 0.5 × 1 mm3, matrix size = 383 × 510; DTI scan 
parameters were the following: dual spin-echo echo planar 
sequence with 8 averages, voxel size = 1.7 × 1.7 × 3 mm3 
zero-filled to 0.86 × 0.86 × 3  mm3, 40 axial slices with 

Table 1   Demographics of 
the prenatal alcohol exposure 
(PAE) and control groups across 
two cohorts (The Kids Brain 
Health Network, KBHN and the 
Canadian Institutes of Health 
Research, CIHR) and sites

*Significant group differences (PAE vs controls) within each subgroup at p < 0.05. Two-sample t-tests were 
performed for age; Chi-square tests were performed for sex and ethnicity. Only ethnicity was significantly 
different at three sites in the KBHN cohort (University of Alberta: Chi-square = 17.14, p = 0.00019; Uni-
versity of Manitoba, Chi-square = 13.35, p = 0.0013; University of British Columbia: Chi-square = 14.45, 
p = 0.00073) and the CIHR cohort (Chi-square = 35.04, p < 1 × 10–5), as well as between the PAE and con-
trol groups combined across sites (Chi-square = 76.97, p < 1 × 10–5)

Cohort Site Group N Age (years) Sex (F/M) Ethnicity (First 
nations/Caucasian/
other)

KBHN University of Alberta PAE 20 11.6 ± 3.2 9/11 14/3/3*
Controls 14 10.6 ± 3.1 5/9 1/12/1

Queen’s University PAE 23 11.8 ± 3.4 11/12 4/15/4
Controls 15 12.7 ± 4.2 7/8 0/15/0

University of Manitoba PAE 11 12.9 ± 1.4 5/6 5/1/5*
Controls 10 10.8 ± 2.7 3/7 0/10/0

University of British Columbia PAE 15 11.9 ± 4.7 5/10 10/4/1*
Controls 18 12.9 ± 2.3 4/14 0/13/5

CIHR University of Alberta PAE 52 12.2 ± 3.0 21/31 17/15/20*
Controls 62 11.4 ± 3.1 30/32 2/51/9

Total PAE 121 12.0 ± 3.3 51/70 50/38/33*
Controls 119 11.6 ± 3.2 49/70 3/101/15
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no gap, matrix size = 256 × 256; 6 gradient directions, 
b = 1000 s/mm2, 1 b0 image, 8 averages, TR = 6400 ms, 
TE = 88 ms, scan time = 4:29 min (Lebel et al. 2008, 2010).

MRI data preprocessing

Structural T1 data were skull-stripped and segmented into 
gray matter, white matter, and cerebrospinal fluid using FSL 
version 5.0.9 (Zhang et al. 2001; Jenkinson et al. 2012). 
Total brain volume was calculated as the sum of gray mat-
ter and white matter volumes, and used as a covariate for 
the group comparison analysis because it is consistently 
decreased in the PAE (Lebel et al. 2011; Treit et al. 2016, 
2017; Jarmasz et al. 2017; Nguyen et al. 2017), and can 
affect graph measurements (Yan et al. 2011; Li et al. 2015). 
DTI data were preprocessed in ExploreDTI version 4.8.6 
(Leemans et al. 2009), including corrections for Gibbs ring-
ing, head motion, and eddy current distortions, followed 
by calculation of the diffusion tensor to yield fractional 
anisotropy and mean diffusivity per voxel. Deterministic 
tractography of the whole brain was performed using the 
following parameters: seedpoint resolution = 2 × 2 × 2 mm3, 
seed FA threshold = 0.15, fiber length range = 50–500 mm, 
angle threshold = 30º, step size = 1, linear interpolation. 
Individual FA maps were co-registered to a FA template 
(FMRIB58_FA_1mm.nii.gz) in standard MNI space using 
FLIRT in FSL (Jenkinson and Smith 2001; Jenkinson et al. 
2002), and the affine transformation matrix was saved for 
subsequent analysis.

Structural connectome analysis

To build the individual DTI-based structural connectivity 
matrices, the Automated Anatomical Labeling (AAL) tem-
plate was used to subdivide the brain into 90 regions exclud-
ing the cerebellum (Tzourio-Mazoyer et al. 2002; Bullmore 
and Sporns 2009). The AAL template in MNI space was 
provided by MRIcron (Rorden and Brett 2000). Individual 
level AAL templates were created by transforming the stand-
ard AAL template from MNI space to individual DTI space 
through the affine transformation matrix calculated above. 
The individual AAL template was dilated with a 3-mm 
radius sphere using the FSL command “fslmaths” to make 
sure all AAL regions were reached by fiber tracts. Individual 
AAL template and whole-brain fiber tractography were input 
to the ExploreDTI toolbox to create a 90 × 90 region-wise 
connectivity matrix for each individual with “PASS” option, 
which means two regions were considered connected even if 
a third region was passed through (Sidlauskaite et al. 2015; 
Dimond et al. 2017). Each element of the matrix contained 
the averaged FA value within the connected fiber tracts 
between regions and was set to zero if there was no connec-
tion. All connectivity matrices were fully connected. The 

intensity of the connectome was calculated by averaging all 
elements in the weighted matrix. The connectome density 
was calculated as the ratio between the number of existing 
edges and the size of the matrix. The weighted connectivity 
matrix was binarized to 1 and 0 for the calculations of the 
graph theoretical metrics (Fig. 1).

Graph theoretical metrics (clustering coefficient, shortest 
path length, small-worldness (i.e., λ, γ and σ), local effi-
ciency, global efficiency, betweenness centrality and degree 
centrality) were calculated from each individual connectivity 
matrix using the GRETNA toolbox (Wang et al. 2015). Clus-
tering coefficient measures the connection density among 
all neighbors of each node; shortest path length is the low-
est number of pathways necessary to transfer information 
between any pair of nodes in the graph; local efficiency 
measures the efficiency of transferring information in a 
graph of each node and its neighbors based on the inverse of 
shortest path length; global efficiency (or nodal efficiency) 
is the efficiency of a node to all other nodes in the whole 
graph; betweenness centrality measures the number of short-
est pathways that pass through each node; degree centrality 
measures the number of the connections of each node to 
the rest of the network (Humphries et al. 2006; Bassett and 
Bullmore 2006; Bullmore and Sporns 2009; Buckner et al. 
2009; Rubinov and Sporns 2010; Wang et al. 2010; Cao 
et al. 2013; Power et al. 2013). Small-worldness analysis 
used 100 randomly-generated networks (Maslov and Snep-
pen 2002): λ measures the ratio between the real shortest 
path length and that of the random networks; γ measures the 
ratio between the real clustering coefficient and that of the 
random networks; σ (small-worldness) is the ratio between 
λ and γ. The whole-brain averaged metrics are the mean of 
each metric across all nodes of the graph.

Permutation tests on the connectome average intensity, 
average density, whole brain and nodal metrics were used 

Fig. 1   The group-averaged binarized connectivity matrix of prenatal 
alcohol exposure (PAE) group and unexposed controls. Each row/col-
umn represents an automated anatomical labeling (AAL) region with 
the same order provided in MRIcron (Rorden and Brett 2000). Yellow 
in the matrix represents a connection between a pair of AAL regions, 
while blue means no connection was present. An arbitrary threshold 
(= 1) was applied to the matrix for viewing purposes
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to test for differences between the PAE and control groups 
controlling for age, sex, total brain volume, scan site, cohort 
(KBHN or CIHR), and ethnicity (First nation/Caucasian/
Other). Results are shown both uncorrected and corrected 
for multiple comparisons using the false discovery rate 
(FDR) correction. For nodal metrics, significance was set 
to p < 0.05 with FDR correction applied to account for the 
high number of nodes across the brain. These tests were 
performed in the GRETNA toolbox (Wang et al. 2015). A 
supplementary analysis was performed in the same manner 
as above, but without controlling for total brain volume.

Supplementary analyses were also performed to exam-
ine interactions between group and sex and group and age. 
Finally, as an additional test of age-related differences, par-
ticipants were divided into three separate age bins and group 
differences were tested as above.

To examine separate brain networks, the 90 AAL regions 
were clustered based on the seven networks described in 
(Yeo et al. 2011): the visual, somatomotor, dorsal attention, 
ventral attention, limbic, frontoparietal, and the default mode 
networks. The bilateral caudate, putamen, pallidum, and 
thalamus were clustered to form an eighth network named 
the deep gray matter network (Baum et al. 2017). Interac-
tions (i.e., total number of edges) between (28 comparisons) 
and within (8 comparisons) these networks, and the partici-
pation coefficient based on the network parcellation, were 
calculated and compared between groups with permutation 
tests controlling for covariates mentioned previously. Results 
are reported both uncorrected and after FDR correction for 
multiple comparisons.

Results

Group differences on the whole brain metrics

The PAE group had significantly decreased total brain 
volume (difference = 5.07%, t = −4.00, p < 8.50 × 10–5), 

averaged connectome intensity (difference = 4.42%, 
t = −2.86, p = 0.005), and connectome density (differ-
ence = 3.78%, t = −3.16, p = 0.002) compared to controls.

Table 2 shows group comparisons on the whole-brain 
averaged metrics. Global efficiency, degree centrality, and 
participation coefficient were all lower in the PAE group 
than controls. Shortest path length and betweenness cen-
trality were higher in the PAE group compared to controls.

No differences at the nodal level remained significant 
after FDR corrections at p < 0.05.

Supplementary analyses

Group differences remained similar when whole brain vol-
ume was not controlled (Supplementary Table 1). No signifi-
cant group-by-sex (Supplementary Table 2) or group-by-age 
(Supplementary Table 3) interactions were significant before 
or after FDR correction for multiple comparisons. Group 
differences in age subgroups are provided in Supplementary 
Table 4.

Differences in network interactions

The number of connections among networks was decreased 
in the PAE group compared to controls (Fig. 2), with the 
differences in connections between the default mode and 
somatomotor networks and between the ventral attention 
and somatomotor networks surviving FDR correction. 
The somatomotor and the ventral attention network also 
had reduced intra-network connectivity in the PAE group 
(uncorrected).

Discussion

In a large cohort of children and adolescents with PAE, we 
show decreased global efficiency, degree centrality, and 
participation coefficient, as well as increased shortest path 

Table 2   Group differences for 
whole-brain averaged metrics

PAE (n = 121) Controls (n = 119) Permutation  
p-value

% Difference

Clustering coefficient 0.70 ± 0.03 0.70 ± 0.02 0.08 0.91
Shortest path length 1.39 ± 0.04 1.37 ± 0.04 0.03 1.27
λ 1.22 ± 0.08 1.20 ± 0.08 0.18 1.48
γ 1.01 ± 0.00 1.00 ± 0.00 0.19 0.07
σ 1.22 ± 0.08 1.22 ± 0.07 0.17 1.41
Local efficiency 0.85 ± 0.01 0.85 ± 0.01 0.08 0.38
Global efficiency 0.72 ± 0.02 0.73 ± 0.02 0.03 1.27
Betweenness centrality 25.34 ± 2.36 24.43 ± 2.28 0.04 3.63
Degree centrality 40.34± 3.84 41.89 ± 3.77 0.03 3.78
Participation coefficient 0.95 ± 0.007 0.95 ± 0.01 0.01 0.25
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length and betweenness centrality for the first time. Further-
more, interactions between three networks were significantly 
weaker in the PAE group. This provides evidence of a dis-
rupted structural connectome in PAE, suggesting that wide-
spread global alterations to the brain’s structural networks 
are present in children and adolescents following prenatal 
exposure to alcohol.

Altered connectome measures in PAE

Structural connectome features were altered in children 
and adolescents with PAE, both on a global level and in 
the network interactions. These findings align well with 
the two previous studies of the brain’s connectome in PAE, 
both of which examined functional connectivity (Wozniak 
et al. 2013, 2017). One study showed increased shortest path 
length and decreased global efficiency in the PAE group 
compared to controls (Wozniak et al. 2013), and the other 
study found higher variability of network measurements in 
the PAE group (Wozniak et al. 2017). Both of these resting-
state fMRI studies found that the PAE group had similar 
small-worldness (σ) to unexposed controls. Structural con-
nectivity provides the anatomical basis of functional con-
nectivity between brain areas. Previous studies have shown 
high agreement of strength and spatiality between struc-
tural and functional connectomes (Skudlarski et al. 2008; 
Honey et al. 2009, 2010; Hermundstad et al. 2013; Horn 
et al. 2014), but have also found that regions with high func-
tional connectivity may not have direct structural connec-
tivity (Hagmann et al. 2008; Honey et al. 2009). Graphic 
measures such as network hubs and small-worldness tend to 
share similar features between white matter-based structural 
networks and resting-state functional networks (Bassett and 
Bullmore 2006; Honey et al. 2010). Our results show similar 

small-worldness in both groups, and increased shortest path 
length, and lower global efficiency in the PAE group, in 
agreement with these functional connectome studies.

Nodal level metrics were not significantly different 
between groups. Previous studies found that the connections 
among nodes shift from a more local to a more distributed 
arrangement from early childhood to adulthood (Fair et al. 
2008, 2009; Power et al. 2010), suggesting that the lack of 
differences here may be related to the wide age range, while 
inconsistencies between studies likely relate to developmen-
tal stage. A previous DTI-based connectomic study found 
decreased shortest path length and increased local efficiency 
from early childhood to adolescence in unexposed controls 
(Chen et al. 2013), which were in line with the present study 
(Supplementary Table 3). However, interactions between 
group and age for the whole-brain averaged graphic meas-
ures were not significant, nor were there differences when 
participants were grouped by age and each age range was 
tested separately (Supplementary Tables 3 and 4). This sug-
gests few changes in the nodal structural development in the 
age range used here, but rather that the network is altered 
at a global level. This agrees well with previous research 
showing widespread structural brain alterations rather than 
striking focal changes in children and adolescents with PAE 
(Riley et al. 2004; Lebel et al. 2011; Wozniak et al. 2013; 
Nguyen et al. 2017). More subtle changes at individual 
nodes and edges may ultimately lead to the alterations at 
the whole network level.

Increased shortest path length and lower global efficiency 
might reflect the fact that a graph with fewer edges needs 
more pathways to connect pairs of nodes (Achard and Bull-
more 2007; Markov et al. 2011). We found that the con-
nectivity matrices of children and adolescents with PAE 
were less dense, which likely reflects the weaker white 

Fig. 2   The prenatal alcohol 
exposure (PAE) group had 
widely reduced inter-network 
connectivity. Blue indicates 
lower connectivity in the PAE 
group compared to unexposed 
controls, with arrows indicating 
reduced interactions between 
and within networks. Under 
each network/interaction with 
significant group differences, 
the mean difference between 
number of connections and 
uncorrected p-values are given. 
Bold arrows and asterisks 
indicate p < 0.05 after false 
discovery rate (FDR) correction 
for multiple comparisons
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matter fiber connectivity as evidenced by lower FA found 
in previous studies (Wozniak et al. 2006; Lebel et al. 2008, 
2011; Wozniak and Muetzel 2011; Treit et al. 2013). Local 
connectivity, including the clustering coefficient and local 
efficiency metrics, was similar in children with PAE and 
controls. Thus, the structural connectome of children and 
adolescents with PAE seems to have slightly less of a small-
world network arrangement than unexposed controls, with 
slight shifts toward a more regular network arrangement. A 
regular network is a network in which nodes only connect 
to their neighbors, with no long-range connection and low 
global efficiency compared to the optimal small-world net-
work structure (Watts and Strogatz 1998; Bassett and Bull-
more 2006; Bullmore and Sporns 2009).

Decreased inter‑ and intra‑network connectivity 
in PAE

We employed a widely used functional network segregation 
model to examine inter- and intra-network connectivity (Yeo 
et al. 2011; Power et al. 2013). Children and adolescents 
with PAE had significantly decreased connectivity compared 
to unexposed controls in nearly 30% of all possible network 
interactions (Fig. 2). The somatomotor network had signifi-
cantly decreased connectivity within itself, as well as with 
all other networks except the deep gray matter network, sug-
gesting it is significantly affected by PAE. Previous studies 
have observed lower FA in sensorimotor connections (Lebel 
et al. 2008), and decreased functional connectivity with sen-
sorimotor areas in children and adolescents with PAE (Long 
et al. 2018). A small study in infants with PAE showed 
trend-level decreased functional connectivity between bilat-
eral somatosensory regions (Donald et al. 2016), although 
another study found the somatosensory network was not 
affected in children with PAE (Fan et al. 2017). Sensory 
processing difficulties and gross and fine motor deficits are 
common in children and adolescents with PAE (Riley and 
McGee 2005; Jirikowic et al. 2008, 2013; Doney et al. 2014) 
and may be caused in part by altered brain connectivity in 
sensorimotor areas.

The ventral attention network also had decreased intra-
network connectivity, and decreased connectivity with the 
default model network and the somatomotor network in 
children and adolescents with PAE compared to controls. A 
previous study using independent component analysis found 
young children with PAE presented decreased intra-network 
functional connectivity in the ventral attention network (Fan 
et al. 2017), suggesting an association with this structural 
finding. Attention deficit is one of the adverse outcomes 
associated with PAE (Larkby and Day 1997; Jacobson 
and Jacobson 2002; Riley and McGee 2005; Mattson et al. 
2011). Children with PAE present impairment of focusing 
and shifting attention during cognitive tasks (Mattson et al. 

2006; Lane et al. 2014), which might be modulated by the 
default mode network (Kim 2010; Scheibner et al. 2017). 
Decreased structural connectivity among those functional 
networks might underlie attention problems in children with 
PAE.

In general, network development tends to follow a local-
to-global pattern whereby distant regions and networks 
become more connected with age (Fair et al. 2009; Power 
et al. 2010; Vogel et al. 2010). The decreased connectiv-
ity between networks seen here suggests that children and 
adolescents with PAE do not show the expected interac-
tions among brain regions (Fair et al. 2012; Rudie et al. 
2013; Matthews and Fair 2015; Mevel and Fransson 2016). 
Previous PAE studies examining individual networks have 
described reduced functional connectivity in the default 
mode network (Santhanam et  al. 2011), regions within 
the frontal parietal network and the salience network (Lit-
tle et al. 2018), and somatomotor networks (Donald et al. 
2016; Long et al. 2018). The altered white matter connec-
tivity among networks described here provides a potential 
structural basis for these observed decreases in functional 
network integration.

There were several limitations in the current study. 
Choices of thresholds and parameters to calculate network 
connectivity with DTI can impact results (Maier-Hein et al. 
2017; Sotiropoulos and Zalesky 2017; Sinke et al. 2018). 
Other sophisticated tractography models such as spheri-
cal deconvolution informed filtering of tractograms (SIFT) 
have been suggested to increase the reproducibility of struc-
tural connectome intra-/inter- participants and scans (Smith 
et al. 2015) and may be useful in future studies. The connec-
tivity matrix here was binarized and unthresholded in order 
to reduce individual variability and avoid isolated nodes. 
Future studies may consider alternative methods to build 
the structural network, such as probabilistic tractography 
(Cao et al. 2013; Tsai 2018), using weighted connectivity 
matrix (Cheng et al. 2012), thresholds (Tsai 2018), and/or 
the integration of multiple DTI metrics to build the edges 
(Chung et al. 2017), in order to extend our findings. There 
were no significant results in the group-by-age and group-
by-sex interaction analysis. This is likely because the sam-
ple sizes provided insufficient power to detect interactions. 
Furthermore, there were more older children (163 chil-
dren > 10 years, 77 children ≤ 10 years) than younger chil-
dren in our study, which may bias results. Future analyses 
in larger samples are necessary to determine whether there 
are group-by-age or group-by-sex interactions.

In conclusion, in a large, multi-site dataset, decreased 
network efficiency, centrality, and intra/inter-network con-
nectivity were observed in the DTI-based structural connec-
tome of children and adolescents with PAE compared with 
unexposed controls. These results expand previous white 
matter findings to a network level, suggesting poor network 
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organization accompanying the white matter deficits in chil-
dren and adolescents with PAE. Future work should focus 
on the relationship between the network features and neu-
robehavioral outcomes, providing a better understanding of 
the neural basis associated with PAE.
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